博碩士論文 952203019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.224.54.134
姓名 楊志偉(Jhih-Wei Yang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 二氧化鈦奈米管/碳黑複合物應用於觸媒載體
(High Performance DMFC PtRu-Catalyst using TiO2 Nano-tube (TNT) and Vulcan XC-27R mixture as Support)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 直接甲醇燃料電池具有高能量密度、燃料穩定容易儲存、填充方便等優勢,相當具發展潛力,由於觸媒催化效率不良,使成本居高不下。觸媒催化效率低,原因包含 (1)甲醇氧化與氧氣還原反應步驟複雜,需克服相當高之活化能,因此反應速率低; (2)反應過程中間產物毒化Pt; (3)觸媒金屬在載體上分散與吸附不良、金屬穩定度不足經過使用後,金屬流失或是聚集。
本論文使用TNT/XC72R的混合物為直接甲醇燃料電池觸媒載體,藉以提昇燃料電池觸媒效能。混合物兼具TNT的高表面積與XC-72R的導電度。使用乙二醇為溶劑間還原劑,並以微波加熱或是回流加熱還原PtRu。PtRu顆粒能均勻分佈在TNT與XC-72R上。
利用迴流法製備之觸媒,較微波法擁有較小粒徑。金屬顆粒的大小鑑定,採直接利用穿透式電子顯微鏡(TEM),或是間接以Debye Function Analysis(DFA)與Williamson-Hall Plot分析粉末X光繞射圖譜,求得粒徑大小為2-5nm。電化學性質分別採用循環伏安法 (Cyclic Voltammetry, CV)測試甲醇氧化活性抗CO毒化率 (CO Tolerance);CO脫附 (CO Stripping)測試化學活性面積 (Electrochemical Surface Area, ECSA);掃瞄速率 (Scan Rate Test)測試分析甲醇擴散效應;定電壓安培法 (Chronoamperometry, CA)測試觸媒長時間使用效能。
這些特性顯示PtRu奈米粒子,能夠在TNT/XC-72R混合物上,保持高的表面積與導電度。TNT能與PtRu有強作用力,能夠穩定金屬,高TNT含量的觸媒在經過長時間使用後,依然維持良好合金度,不因使用出現PtRu分相。XC-72R用來補償TNT導電性的不足,TNT則扮演降低CO毒化與降低起始電位,SEM的結果顯示較高TNT含量觸媒結構呈現多孔隙結構,使觸媒能夠加分散增加電化學活性面積。並且提供燃料進入之通道,當TNT含量增加至40 wt %~ 50 wt %時,會與導電度出現最適化點。若TNT量繼續增加,則因XC-72R 量不足造成導電度下降,進而使觸媒效能下降
摘要(英) Direct methanol fuel cells (DMFC) shows potential as new energy source due to its relatively high energy density, easy to store and transport fuel, and easy to reload. However, the low catalyst efficiency, insufficient durability and high cost to manufacture are hurdles for immediate commercialization. The technical issues to overcome includes (1) lowering the activation so that catalytical reaction rates for both methanol oxidation and oxygen reduction can be improved, (2) to alleviate Pt poisoning by CO in fuel stream and intermediate product, (3) to improve the metal nanoparticle stability and adhesion such that metal aggregation and losses due to poor stability and low adhesion can be eradicated. .
Present study disclosed a novel high performance catalyst for DMFC where the efficiency, activity, stability and durability can all be improved. The catalyst was prepared by using TiO2 Nano-tube (TNT) and XC-72R mixture as the metal catalyst support which preserved both the high surface area (from TNT) for reaction and high electronic conductivity (from XC-72).
The PtRu catalysts had been prepared by glycol reduction with either microwave or reflux heating methods. The reflux prepared catalyst shows the best performance due to the smaller size than that prepared by microwave heating. The particle size, particle size distribution and Pt and Ru atomic partition within the nanoparticle is characterized Debye functional analysis (DFA) and Williamson-Hall Plot. This analysis indicated bi-modal particle size distributions with size averaged at 2 and 5 nm. The methanol oxidation activity and CO tolerance are measured by cyclic voltammetry. Using CO-stripping assesses the electrochemical surface area. The scan rate test analysis the methanol diffusion property. The catalysts life time are determined by chronoamperometry.
These characterizations showed PtRu nano particle on TNT and XC-72R mixture exhibits high surface area and good electric conductivity, displayed excellent catalytic activities compared with the single component substrate using either TNT or XC-72R. Furthermore, the TNT exhibited strong interaction which stabilized the PtRu nano-particle. The high TNT content catalyst after long time test remains well alloy and preserved high activity. It is interesting to observe that XC-72R beads forms connected strings which sustained the electronic conductivity.
In addition, TNT substrate also plays an imperative role in decreasing CO poisoning and on-set pontential, the morphology obtained by SEM shows that the nanocomposite substrate is highly miscible and displayed conspicuous porous structure which make catalyst more disperse to increase the electrochemical surface area. These characters enhance the degree of metal particles dispersion and provided fluent fuel transmission path when TNT content reached above 40wt%. The best catalytic performance is reached with 50wt % TNT and 50 wt% XC-72R. The performance decays with higher TNT since at low XC-72R content, the electronic conductivity is lost and the catalytical activity is reduced.
關鍵字(中) ★ 二氧化鈦奈米管
★ 觸媒
★ 直接甲醇燃料電池
★ 化學活性面積
關鍵字(英) ★ TiO2 nanotube
★ anode catalyst
★ DMFC
★ ECSA
論文目次 中文摘要…………………………………………………………………I
英文摘要………………………………………………………………III
目錄……………………………………………………………………VI
圖目錄……………………………………………………………………X
表目錄………………………………………………………………XIII
第一章 序論……………………………………………………………1
1-1 前言…………………………………………………………………1
1-2 燃料電池簡介………………………………………………………1
1-3 燃料電池種類………………………………………………………2
1-4 燃料電池組件說明…………………………………………………4
1-4-1 薄膜電極組………………………………………………………5
1-4-1a 質子交換膜……………………………………………………6
1-4-1b 陰極與觸媒……………………………………………………6
1-4-1c DMFC陽極與觸媒………………………………………………7
1-5 直接甲醇燃料電池工作原理………………………………………9
1-6 燃料電池極化現象………………………………………………11
1-7 研究動機…………………………………………………………13
第二章 文獻回顧………………………………………………………14
2-1 影響觸媒顆粒成長之因子………………………………………14
2-2 觸媒合成方法及性質……………………………………………17
2-3 載體效應…………………………………………………………21
2-4 影響觸媒使用時效能之因子……………………………………26
第三章 實驗方法………………………………………………………31
3-1 研究設計與方法…………………………………………………30
3-1 二氧化鈦奈米管合成……………………………………………30
3-2 觸媒樣品製備方法………………………………………………32
3-2-1 微波還原法製備觸媒…………………………………………32
3-2-2 迴流還原法製備觸媒…………………………………………33
3-3 觸媒漿料配製與電製備…………………………………………33
3-4 觸媒性能測試……………………………………………………33
3-4-1甲醇氧化活性與觸媒燃料吸附性測試…………………………34
3-4-2 CO脫附…………………………………………………………34
3-4-3 觸媒耐久性測試………………………………………………35
3-5 MEA製作與測試………………………………………………36
3-5-1 質子交換膜處理………………………………………36
3-5-2 氣體擴散電極製作……………………………………36
3-5-3 熱壓條件………………………………………………36
3-5-4 MEA測試………………………………………………37
3-6 觸媒XRD測試與分析………………………………………………37
3-6-1 XRD實驗測試……………………………………………………37
3-6-2 XRD數據分析……………………………………………………38
3-7 實驗藥品…………………………………………………………42
3-8 實驗儀器設備……………………………………………………44
3-9 樣品命名法與代號說明…………………………………………45
第四章 結果與討論……………………………………………………46
4-1載體與觸媒結構鑑定結果.…………………………………46
4-2觸媒金屬顆粒結構分析………………………………………51
4-3 觸媒電化學面積與甲醇催化活性分析……………………57
4-3-1 電化學活性面積分析……………………………………57
4-3-2 循環伏安法半電池測試…………………………………61
4-3-2a 抗CO毒化效能…………………………………………………63
4-3-2b MOR催化活性…………………………………………………65
4-3-2c TNT載體對MOR的影響…………………………………………69
4-3-2d TNT的光催化性質……………………………………………71
4-3-3甲醇傳輸行為探討…………………………………………73
4-3-4 觸媒使用壽命與效能分析………………………………74
4-4 氣體擴散電極表面型態……………………………………76
4-5 薄膜電極組性能測試………………………………………77
4-5自製觸媒之優缺點…………………………………………79
第五章 結論與未來展望………………………………………………81
參考文獻………………………………………………………………83
參考文獻 第一章參考文獻:
1-1. James Larminie, Andrew Dicks; Fuel Cell Systems Explained 2nd; John Wiley & Sons, Inc., 2003
1-2. 衣寶廉; 燃料電池-原理與應用; 五南書局; 2005
1-3. Lide, D.R., Ed., CRC Handbook of Chemistry and Physics, 75th ed.,CRC press, Boca Raton, FL, pp.5-64; 1995
1-4. M. P. Hogarth et al. Platinum Metals Review 2002, 46(4), 146.
1-5. R. Greef; R. M. Peat; L. M. Peter; D. Pletcher; J. Robinson In Instrumental methods in Electrochemistry; John Wiley & Sons, Inc.: New York ,1985.
1-6. Gurau, B.; Viswanathan, R.; Liu, R.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S. Journal of Physical Chemistry B 1998, 102(49), 9997-10003.
1-7. H. A. Gasteiger; N. M. Markovi ; P. N. Ross Jr.; E. J. Cairns Journal of Physical Chemistry 1994, 98, 617-625.
1-8. Handbook of Fuel cells-Fundamentals, Technology and Application, Eds. W. Vielstich, A. Lamm and H.A.Gastegier, John Wiley, Vol. 1, p.42, 2003
1-9. Hung-Chi Tu, Yung-Yun Wang, Chi-Chao Wan, Kan-Lin Hsueh; Journal of Power Sources 2006, 159, 1105–1114
1-10. 黃鎮江; 燃料電池; 全華書局; 2005
1-11. Daniel C. Harris; Quantitative Chemistry Analysis 6th ; W. H.Freeman and Company, 2003
第二章參考文獻:
2-1. Christina Bock, Chantal Paquet, Martin Couillard, Gianluigi A. Botton, Barry R.MacDougall; J. AM. CHEM. SOC. 2004, 126, 8028-8037
2-2. Hyuk Kim, Jin-Nam Park, Won-Ho Lee; Catalysis Today 2003, 87 237–245
2-3. Wei Xiang Chen, Jim Yang Lee, and Zhaolin Liu; Chem. Commum., 2002, 2588–2589
2-4. Zhaolin Liu, Jim Yang Lee, Weixiang Chen, Ming Han, and Leong Ming Gan; Langmuir 2004, 20, 181-187
2-5. Zhen-Bo Wang, Ge-Ping Yin, Peng-Fei Shi; Journal of Power Sources 2007, 163 688–694
2-6. Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, W. Sugimoto; Journal of The Electrochemical Society, 2000, 147 (12) 4421-4427
2-7. Tomoyuki Kawaguchi, Wataru Sugimoto, Yasushi Murakami, Yoshio Takasu; Journal of Catalysis 2005, 229 176–184
2-8. Yongyan Mu, Hanpu Liang, Jinsong Hu, Li Jiang, and Lijun Wan; J. Phys. Chem. B 2005, 109, 22212-22216
2-9. Y. Takasu; H. Itaya; T. Iwazaki; R. Miyoshi; T. Ohnuma; W. Sugimoto; Y. Murakami; Chem. Commun. 2001, 341.
2-10. Y. Takasu; T. Kawaguchi; W. Sugimoto; Y. Murakami; Electrochim.Acta 2003, 48 3861.
2-11. Tomoyuki Kawaguchi; Wataru Sugimoto; Yasushi Murakami; Yoshio Takasu; Journal of Catalysis 2005, 229, 176–184
2-12. N. M. Markovi ; P. N. Ross, Jr.; Surface Science Reports 2002, 45, 117-229
2-13. Wenzhen Li; Xin Wang; Zhongwei Chen; Mahesh Waje; Yushan Yan; J. Phys. Chem. B 2006, 110, 15353-15358
2-14. Wenzhen Li; Xin Wang; Zhongwei Chen; Mahesh Waje; Yushan Yan; Langmuir 2005, 21, 9386-9389
2-15. Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z. H.; Sun, G.; Xin, Q; J. Phys. Chem. B, 2003, 107(26), 6292-6299
2-16. S. Swathirajan; Youssef M. Mikhail; J. Electrochem. Soc., 1991, 138, 1321
2-17. Hyuk Kim; Jin-Nam Park; Won-Ho Lee; Catalysis Today 2003, 87, 237–245
2-18. W. Vogel; P. Britz and H. Bo1nnemann; J. Rothe and J. Hormes; J. Phys. Chem. B 1997, 101, 11029-11036
2-19. Eve S. Steigerwalt; Gregg A. Deluga; David E. Cliffel ;M. Lukehart; J. Phys. Chem. B 2001, 105, 8097-8101
2-20. Eve S. Steigerwalt; Gregg A. Deluga; M. Lukehart; J. Phys. Chem. B 2002, 106, 760-766
2-21. Wenzhen Li, Xin Wang, Zhongwei Chen, Mahesh Waje, Yushan Yan J. Phys. Chem. B 2006, 110, 15353-15358
2-22. Ruizhi Yang, Xinping Qiu, Huairuo Zhang, Jianqi Li, Wentao Zhu, Zhaoxiang Wang, Xuejie Huang, Liquan Chen; Carbon 2005, 43 11–16
2-23. J. Shim, Chang-Rae Lee Hong-Ki Lee Ju-Seong Lee Elton J. Cairns; Journal of Power Sources 2001, 102, 172-177
2-24. Jiun-Ming Chen, Loka Subramanyam Sarm, Ching-Hsiang Chen, Ming-Yao Chenga, Shou-Chu Shih, Guo-Rung Wang, Din-Goa Liu, Jyh-Fu Lee, Mau-Tsu Tang, Bing-Joe Hwang; Journal of Power Sources 2006, 159, 29–33
2-25. Huanqiao Song, Xinping Qiu, Fushen Li, Wentao Zhu, Liquan Chen; Electrochemistry Communications 2007, 9, 1416–1421
2-26. Huanqiao Song, Xinping Qiu, Xiaoxia Li, Fushen Li, Wentao Zhu, Liquan Chen; Journal of Power Sources 2007, 170, 50–54
2-27. Huanqiao Song, Xinping Qiu, Daojun Guo, Fushen Li; Journal of Power Sources 2008, 178, 97–102
2-28. Kristine Drew, G. Girishkumar, K. Vinodgopal, and Prashant V. Kamat; J. Phys. Chem. B 2005, Vol. 109, No. 24, 11851
2-29. J. Zeng, J. Y. Lee, J. Chen, P. K. Shen, and S. Song; Fuel Cells 2007, 07, No. 4, 285–290
2-30. Zhigang Qi, Arthur Kaufman; Journal of Power Sources 2003, 113 37–43
2-31. G. Sasikumar, J.W. Ihma, H. Ryua; Journal of Power Sources?2004, 132 11–17
2-32. R. Fernández, P. Ferreira-Aparicio, L. Daza; Journal of Power Sources 2005, 151 18–24
2-33. M.Schonert, K. Schlumbohm, A. Glusen, J. Mergel, D. Stloent; Fuel Cells 2004, 4, NO.3, 175
2-34. Wenzhen Li, Xin Wang, Zhongwei Chen, Mahesh Waje, and Yushan Yan; Langmuir 2005, 21, 9386-9389
第三章參考文獻:
3-1. Gnutzmann, V.; Vogel, W. J. Phys. Chem. 1990, 94, 4991.
3-2. X-Ray Diffraction 1st ; Dover Publications B. E. Warren, 1968 p.117
3-3. http://www.isis.rl.ac.uk/ISISPublic/reference/Xray_scatfac.htm
第四章 參考文獻:
4-1. Wenzhen Li, Xin Wang, Zhongwei Chen, Mahesh Waje, Yushan Yan J. Phys. Chem. B 2006, 110, 15353-15358
4-2. Wenzhen Li, Xin Wang, Zhongwei Chen, Mahesh Waje, and Yushan Yan; Langmuir 2005, 21, 9386-9389
4-3. Jiun-Ming Chen, Loka Subramanyam Sarm, Ching-Hsiang Chen, Ming-Yao Chenga, Shou-Chu Shih, Guo-Rung Wang, Din-Goa Liu, Jyh-Fu Lee, Mau-Tsu Tang, Bing-Joe Hwang; Journal of Power Sources 2006, 159, 29–33
4-4. Christina Bock, Chantal Paquet, Martin Couillard, Gianluigi A. Botton, Barry R.MacDougall; J. AM. CHEM. SOC. 2004, 126, 8028-8037
4-5. Zhaolin Liu, Jim Yang Lee, Weixiang Chen, Ming Han, and Leong Ming Gan; Langmuir 2004, 20, 181-187
4-6. Wei Xiang Chen, Jim Yang Lee, and Zhaolin Liu; Chem. Commum., 2002, 2588–2589
4-7. Zhaolin Liu, Jim Yang Lee, Weixiang Chen, Ming Han, and Leong Ming Gan; Langmuir 2004, 20, 181-187
4-8. Ruizhi Yang, Xinping Qiu, Huairuo Zhang, Jianqi Li, Wentao Zhu, Zhaoxiang Wang, Xuejie Huang, Liquan Chen; Carbon 2005, 43 11–16
4-9. W. Vogel, P. Britz, H. Bönnemann, J. Rothe, J. Hormes,
J. Phys. Chem. B 101, 11029 (1997)
4-10. H. Yang, W. Vogel, C. Lamy, and N. Alonso-Vante J. Phys. Chem. B 2004, 108, 11024
4-11. H.A. Gasteiger, P.N. Jr. Ross, E.J. Cairns, Surf. Sci. 293, 67 (1993)
4-12. J. Shim, Chang-Rae Lee Hong-Ki Lee Ju-Seong Lee Elton J. Cairns; Journal of Power Sources 2001, 102, 172-177
4-13. Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, W. Sugimoto; Journal of The Electrochemical Society, 2000, 147 (12) 4421-4427
4-14. Teruhisa Ohno, Koji Sarukawa, Kojiro Tokieda, and Michio Matsumura; Journal of Catalysis, 2001, 203, 82–86
4-15. 歐陽良岳, 國立中央大學化學系碩士論文, 民國九十二年
4-16. 呂佩純, 國立中央大學化學系碩士論文, 民國九十年
4-17. 麥真富, 國立中央大學化學系碩士論文, 民國九十三年
4-18. Zhang, X.; Chan, K. Y. Chemistry of Materials 2003, 15, 451-459.
4-19. Xiong, A. Manthiram; Electrochimica Acta 2004, 49, 4163-4170
4-20. Huanqiao Song, Xinping Qiu, Xiaoxia Li, Fushen Li, Wentao Zhu, Liquan Chen; Journal of Power Sources 2007, 170, 50–54
4-21. Huanqiao Song, Xinping Qiu, Daojun Guo, Fushen Li; Journal of Power Sources 2008, 178, 97–102
4-22. 林彥均, 國立中央大學化學系碩士論文, 民國九十五年
4-23. Kukli, K.; Aidla, A.; Aarik, J.; Schuisky, M.; Harsta, A.; Ritala, M.; Leskela, M. Langmuir 2000, 16(21), 8122-8128.
4-24. E. Auer; A. Freund; J. pietsch; T. Tacke Applied Catalysis A: General 1998, 173, 259-271.
4-25. E. Antolini; L. Giorgi; F. Cardellini; E. Passalacqua Journal of Solid State Electrochemistry 2001, 5, 131.
4-26. W. Li; X. Wang; Z. Chen; M. Waje; Y. Yan Langmuir 2005, 21(21), 9386-9389.
4-27. Y. S. Choi; S. H. Joo; S. A. Lee; D. J. You; H. Kim; C. H. Pak; H. Chang; D. Y. Seung Macromolecules 2006, 39(9), 3275-3282.
4-28. 科學發展 2005年11月,395期 p66-69
4-29. Kristine Drew, G. Girishkumar, K. Vinodgopal, and Prashant V. Kamat; J. Phys. Chem. B 2005, Vol. 109, No. 24, 11851
4-30. Daniel C. Harris; Quantitative Chemistry Analysis 6th ; W. H.Freeman and Company, 2003
4-31. Zhanling Wang, Yang Liu, Vladimir M. Linkov; Journal of Power Sources 2006, 160, 326–333
指導教授 諸柏仁(Peter Po-Jen Chu) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明