博碩士論文 952203034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:132 、訪客IP:3.142.12.240
姓名 謝明宏(Ming-Hung Hsieh)  查詢紙本館藏   畢業系所 化學學系
論文名稱 二氧化鈦修飾中孔洞分子篩之合成、結構特性與光催化反應
(Synthesis, Characterization and Photocatalytic Reaction of Titanium-modified Mesoporous Materials)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用化學嫁接法將二氧化鈦薄膜嫁接於 SBA-15 表面, 修飾後的材料具有高比表面積及高規則的中孔洞結構,在亞甲基藍光降解反應中亦有相當優異的表現。
XRD 與 HRTEM 的結果顯示Ti/SBA R1nc 經由鍛燒處理後,鍛燒溫度的提高不會破壞材料結構的規則,且二氧化鈦的單分子層亦無晶相的特徵峰。若是比較 Ti/SBA R1c500、Ti/SBA R2c500 與 Ti/SBA R3c500,隨著迴流次數的增加,材料結構的規則性略微下降,比表面積由SBA-15的765 m2/g等間距下降至Ti/SBA R3c500的480 m2/g。ICP-OES的分析顯示含Ti量由Ti/SBA R1c500的6.5 wt% 增加至Ti/SBA R3c500的22.7 wt%。然而,經由水熱處理的Ti/SBA R1HT,其結構的規則性明顯下降許多且出現 TiO2 Anatase 晶相的特徵峰;在氮氣等溫吸附-脫附曲線中的遲滯迴圈,呈現 H3 type 的狹縫型孔洞,表示可能產生TiO2奈米顆粒堆積在原有規則孔道中,顯示孔道高度規則性已不復見,與 FESEM 看到的分子篩表面被TiO2 奈米顆粒緊密包覆的影像相符。
亞甲基藍光催化降解實驗顯示水溶液中亞甲基藍的移除可分為吸附量與降解量兩部份。實驗結果顯示隨著鍛燒溫度的增加,對亞甲基藍的吸附量亦隨之增加,推測是高溫熱處理使二氧化鈦的單分子薄膜收縮,連帶裸露出擔體 SBA-15 的表面,造成吸附量的提升;在降解部分Ti/SBA R1c500 的光催化能力最佳,兩小時內可降解 42.8 % 的亞甲基藍,優於 Ti/SBA R1nc 的 36.8 %,一階反應常數k 值則由Ti/SBA R1nc的 0.0856 ( min-1 ) 增加到 0.1213 ( min-1 )。以水熱法處理的Ti/SBA R1H吸附量僅有12.9 %,兩小時內可降解 58.1%,其 k 值為0.1152 ( min-1 )。藉由增加化學嫁接的次數提昇材料的鈦含量,Ti/SBA R2c500與Ti/SBA R3c500的k 值大幅提升至0.2260 ( min-1 ) 與0.2001 ( min-1 )。然而,Ti/SBA R2HT與Ti/SBA R3HT的光催化活性與Ti/SBA R1HT相較並無顯著增加。本研究利用化學嫁接法並調控鍛燒溫度與嫁接次數的最適化,成功地製備出結構規則且二氧化鈦均勻批覆的中孔洞光觸媒材料,適度增加材料的含鈦量可使光催化降解亞甲基藍的活性提昇將近1倍。
摘要(英) In this study, the prepared SBA-15 was grafted with a TiO2 thin layer via chemical grafting method. The resulting TiO2-modified material with high surface area and well-ordered mesoporous structure can be demonstrated efficiency in MB photoblenching reaction.
XRD and HRTEM images showed that under the process of calcination, Ti/SBA R1nc increase calcined temperature didn’t caused destroy of the structure of Ti/SBA R1nc, whereas TiO2 monolayer was hardly observed. Comparing Ti/SBA R1c500 , Ti/SBA R2c500 and Ti/SBA R3c500, we concluded that the surface areas decreased regularly with the increasing times of reflux from 765 m2/g ( SBA-15 ) to 480 m2/g ( Ti/SBA R3c500 ). ICP-OES revealed the contents of Ti had risen from 6.5% ( Ti/SBA R1nc ) to 22.7% ( Ti/SBA R3c500 ). However, the regularity of structure decreased enormously and TiO2 anatase phase characteristic peak was observed after hydrothermal treatment of Ti/SBA R1HT. The hysteresis loop of N2 adsorption-desorption isotherm presented that the slit from pore of H3 type, indicated the TiO2 nanoparticle had piled up and destroyed the high regularity of the original channels. The conclusion corresponded to the FESEM image which molecular sieves were tightly surrounded by TiO2 nanoparticles.
The result of MB photoblenching reaction was exhibited by two parts: adsorption and degradation. In adsorption part, we assumed the higher calcined temperature could make TiO2 monolayer shrink and exposed the surface of SBA-15 that resulted in increase of MB adsorption. In degradation part, Ti/SBA R1c500 performed the best photocatalytic ability that decomposed 42.8% MB in 2 hours while Ti/SBA R1nc performed only 36.8%. K values of first-order reaction elevated from 0.0856 min-1 ( Ti/SBA R1nc ) to 0.1213 min-1 ( Ti/SBA R1c500 ). Ti/SBA R1HT under hydrothermal treatment adsorbed only 12.9% MB and decomposed 58.1% MB in 2 hours ( K = 0.1152 ). By incresing times of chemical grafting, the k values of 0.2260 min-1 and 0.2001 min-1. However, the photocatalytic activities of Ti/SBA R2HT and Ti/SBA R3HT didn’t perform such a significant improvement as Ti/SBA R1HT.
In this study, we found the optimal condition by adjusting calcined temperature and grafting times and successfully prepared a photocatalytic material that nearly multiplied the degradation of MB photobleaching reaction.
關鍵字(中) ★ 化學嫁接法
★ 二氧化鈦
★ SBA-15
★ 亞基甲藍光降解反應
關鍵字(英) ★ MB photoblenching reaction
★ SBA-15
★ Chemical grafting method
★ Titianium dioxide
論文目次 摘要………………………………………………………………………I
Abstract…………………………………………………………………III
誌謝……………………………………………………………………..V
目錄…………………………………………………………………….VI
圖目錄………………………………………………………………….XI
表目錄………………………………………………………………..XVI
第一章 緒論……………………………………………………………1
1-1 中孔洞氧化矽材料發展……………………………………1
1-2 M41S系列……………………………………………………1
1-3 SBA系列…………………………………………………….5
1-4 二氧化鈦簡介………………………………………………9
1-4-1 二氧化鈦的光催化原理…………………………………13
1-4-2 二氧化鈦修飾中孔材料…………………………………14
1-4-2-1 後合成嫁接法 ( Post synthesis grafting method
...........................................14
1-4-2-2 含浸法 ( Impregnation method )……………….15
1-4-2-3 直接水熱法 (Direct Hydrothermal method )….15
1-5 研究動機…………………………………………….…………16
第二章 實驗方法…………………………………………………….17
2-1 化學藥品………………………………………………….17
2-2 實驗儀器………………………………………………….18
2-3 分子篩的製備…………………………………………….19
2-3-1 水熱法 (Hydrothermal) 製備 SBA-15中孔洞分子篩..19
2-3-2 後合成嫁接法 (Post synthesis grafting) 製備 TiO2
修飾 SBA-15分子篩………………………………………19
2-3-3 不同鍛燒溫度的 TiO2 修飾 SBA-15 分子篩………..20
2-3-4 不同嫁接次數之 TiO2 修飾SBA-15分子篩……………21
2-3-5 以水熱結晶方式製備 TiO2 修飾 SBA-15分子篩…….22
2-4 觸媒之結構分析與鑑定……………………………………….22
2-4-1 X光粉末繞射 (Powder X-ray Diffraction;XRD)….22
2-4-2 熱重分析法 (Thermal Gravimetric Analysis;TGA)23
2-4-3 氮氣等溫吸附-脫附曲線 (N2 adsorption –
desorption isotherm) ..........................24
2-4-3-1 以 BET 理論求得表面積………………………………27
2-4-3-2 以 BJH 理論求得孔徑分布……………………………28
2-4-3-3 孔洞總體積的計算…………………………………….30
2-4-4 場發射掃描式電子顯微鏡 (Field-emission Scanning
Electron Microscopy;FESEM)…………………………….31
2-4-5 高解析度穿透式電子顯微鏡 (High Resolution
Transmission Electron Microscopy;HRTEM)..........32
2-4-6 紫外光-可見光吸收光譜 (UV-Visible spectroscopy;
UV-Vis)……………………………………………………...32
2-4-7 傅立葉紅外線吸收光譜 (Fluorier Transform Infrared
Spectroscopy;FT-IR)………………………………………33
2-4-8 誘導偶電漿原子發射光譜儀 (Inductivity Coupled
Plasma-Optical Emission Spectroscopy ; ICP – OES)33
2-4-9 X-光吸收精細結構光譜 (X-ray Absorption
FineStructure spectroscopy;XAFS)……………………34
2-4-10 拉曼光譜 (Raman spectroscopy)……………………… 35
2-5 亞甲基藍光脫色反應測試…………………………………….36
第三章 結果與討論………………………………………………….39
3-1 中孔洞分子篩 SBA-15………………………………………..39
3-1-1 XRD 鑑定........................................39
3-1-2 氮氣等溫吸附 – 脫附曲線.........................41
3-1-3 熱重分析 (TGA) 鑑定..............................42
3-1-4 傅立葉轉換紅外線光譜 (FT-IR).....................43
3-1-5 場發射掃描式電子顯微鏡 (FESEM)...................44
3-1-6 高解析穿透式電子顯微鏡 (HRTEM)...................45
3-2 後合成法嫁接 TiO2 修飾中孔分子篩 SBA-15……………..46
3-3 鍛燒溫度的影響………….............................46
3-3-1 XRD 鑑定.........................................47
3-3-2 氮氣等溫吸附 – 脫附曲線.........................49
3-3-3 場發射掃描式電子顯微鏡 (FESEM)...................52
3-3-4 高解析穿透式電子顯微鏡 (HRTEM)...................55
3-3-5 Raman 光譜.......................................55
3-3-6 Ti K-edge XANES 光譜.............................57
3-3-7 亞甲基藍光降解活性測試...........................58
3-4 迴流嫁接鈦源次數………………………………...........64
3-4-1 XRD 鑑定.........................................64
3-4-2 氮氣等溫吸附 – 脫附曲線.........................67
3-4-3 場發射掃描式電子顯微鏡 (FESEM)...................69
3-4-4 高解析穿透式電子顯微鏡 (HRTEM)...................69
3-4-5 Raman 光譜.......................................72
3-4-6 Ti K-edge XANES 光譜.............................73
3-4-7 亞甲基藍光降解活性測試...........................74
3-5 鍛燒與水熱結晶方式的比較…………………………….....76
3-5-1 XRD 鑑定.........................................76
3-5-2 氮氣等溫吸附 – 脫附曲線.........................78
3-5-3 場發射掃描式電子顯微鏡 (FESEM)...................80
3-5-4 高解析穿透式電子顯微鏡 (HRTEM)...................80
3-5-5 Raman 光譜.......................................84
3-5-6 亞甲基藍光降解活性測試...........................85
第四章 結論………………………………………………………….89
參考文獻……………………………………………………………..92
附錄……………………………………………………………………101
參考文獻 [1] Ying, J.Y.; Mehnert, C. P.; Wong, M.S. “Synthesis and applications of supramolecular-templated mesoporous materials.” Angew. Chem. Int. Ed., 38, 56 ~ 77, 1999.
[2] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.” Nature., 359, 22, 710 ~ 712, 1992.
[3] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D., Chu, C. T-W.; Olson, D. H.; Sheppard, E. W,; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. “A new family of mesoporous molecular sieves prepared with liquid crystal templates.” J. Am. Chem. Soc., 114, 27, 10834 ~ 10843, 1992.
[4] Hoffmann F., Cornelius M., Morell J., and Fr?ba M. Angew. “Silica-Based Mesoporous Organic-Inorganic Hybrid Materials .” Angew. Chem. Int. Ed., 45, 20, 3216 ~ 3251, 2006.
[5] Monnier, A.; Sch?th, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. “Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures.” Science., 261, 1526, 1299 ~ 1303, 1993.
[6] Sayari, A. “Catalysis by Crystalline Mesoporous Molecular Sieves.” Chem. Mater., 8, 8, 1840 ~ 1852, 1996.
[7] Neumann, R.; Khenkin, K. “Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides.” Chem. Commun., 23, 2643 ~ 2644, 1996.
[8] Reddy, J. S.; Sayari, A. “Room-temperature synthesis of a highly active vanadium-containing mesoporous molecular sieve, V-HMS.” J. Chem. Soc., Chem. Commun., 21, 2231 ~ 2232, 1995.
[9]. Wu, C. G.; Bein, T. “Conducting Polyaniline Filaments in a Mesoporous Channel Host.” Science., 264, 5166, 1757 ~ 1759 , 1994.
[10] Wu, C. G.; Bein, T. “Conducting Carbon Wires in Ordered, Nanometer-Sized Channels.” Science., 266, 5187, 1013 ~ 1015, 1994.
[11] Wu, C. G.; Bein, T. “Polyaniline Wires in Oxidant-Containing Mesoporous Channel Hosts.” Chem. Mater., 6, 8, 1109 ~ 1112, 1994.
[12] Ko, C. H.; Raoo, R. “Imaging the channels in mesoporous molecular sieves with platinum.” J. Chem. Soc., Chem. Comunn., 21, 2467 ~ 2468, 1996 .
[13] Abe, T.; Tachibana, Y.; Uemtsu, T.; Iwamoto, M. “Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate.” J. Chem. Soc., Chem.Commun., 16, 1617 ~ 1618, 1995.
[14] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B. F.; Stucky, G. D. “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.” Science, 279, 23, 548 ~ 552, 1998.
[15] Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. “Block copolymer-templated mesoporous oxides.” Curr. Opin. Colloid Interface Sci., 8, 109 ~ 126. 2003.
[16] Zhao, D.; Huo, Q.; Feng, J.; Chmelka B. F.; Stucky, G. D. “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures.” J. Am. Chem. Soc., 120, 24, 6024 ~ 6036, 1998.
[17] Chen, B. C.; Chao, M. C.; Lin, H. P.; Mou, C. Y. “Faceted single crystals of mesoporous silica SBA-16 from a ternary surfactant system: surface roughening model.” Microporous Mesoporous Mater., 81, 1-3, 241 ~ 249, 2005.
[18] Stevens, W. J. J.; Mertens, M.; Mullens, S.; Thijs, I.; Tendeloo, G. V.; Cool, P.; Vansant, E. F. “Formation mechanism of SBA-16 spheres and control of their dimensions.“Microporous Mesoporous. Mater., 93, 1-3, 119 ~ 124, 2006.
[19] Zhao, D.; Sun, J.; Li, Q.; Stucky, G. D. “Morphological Control of Highly Ordered Mesoporous Silica SBA-15.” Chem. Mater., 12, 2, 275 ~ 279, 2000.
[20] Kleitz, F.; Blanchard, J.; Zibrowius, B.; Sch?th, F. “Influence of Cosurfactants on the Properties of Mesostructured Materials.” Langmuir., 18, 12, 4963 ~ 4971, 2002.
[21] Kleitz, F.; Choi, S. H.; Ryoo, R. “Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes.” Chem. Commun., 17, 2136 ~ 2137, 2003.
[22] Kleitz, F.; Solovyov, L. A.; Anilkumar, G. M.; Choi, S. H.; Ryoo, R. “Transformation of highly ordered large pore silica mesophases ( Fm3m, Im3m and p6mm ) in a ternary triblock copolymer-butanol-water system.” Chem. Commun., 13, 1536 ~ 1537, 2004.
[23] Zhang, H.; Sun, J.; Ma, D; Bao, X.; Klein-Hoffmann, A.; Weinberg, G.; Su, D.; Schl?gl, R. “Unusual Mesoporous SBA-15 with Parallel Channels Running along the Short axis.” J. Am. Chem. Soc., 126, 24, 7440 ~ 7441, 2004.
[24] Chen, B.C.; Lin, H. P.; Chao, M. C.; Mou, C. Y.; Tang, C.Y. “Mesoporous Silica platelets with Perpendicular Nanochannels via a Ternary Surface System.” Adv. Mater., 16, 18, 1657 ~ 1661, 2004.
[25] Sujandi, Park, S. E.; Han, D. S.; Han, S. C.; Jinb, M. J.; Ohsuna, T. “Amino-functionalized SBA-15 type mesoporous silica having nanostructured hexagonal platelet morphology.” Chem. Commun., 39, 4131 ~ 4133, 2006.
[26] Lin, M. L.; Huang, C. C.; Lo, M. Y.; Mou, C. Y. “Well-Ordered Mesoporous Carbon Thin Film with Perpendicular Channels: Application to Direct Methanol Fuel Cell.” J. Phys. Chem. C., 112, 867 ~ 873, 2008.
[27] Mbaraka, I. K.; Shanks, B. H. “Design of multifunctionalized mesoporous silicas for esterification of fatty acid.” J. Catal., 229, 365 ~ 373, 2005.
[28] Yang, C.M.; Schmidtb, W.; Kleitz, F. “Pore topology control of three-dimensional large pore cubic silica mesophases.” J. Mater. Chem., 15, 48, 5112 ~ 5114, 2005.
[29] Yang, L. M.; Wang, Y. J.; Luo, G. S.; Dai, Y.Y. “Simultaneous removal of copolymer template from SBA-15 in the crystallization process.” Microporous Mesoporous Mater., 8, 1-3, 107 ~ 114, 2005.
[30] Saravanamurugan, S.; Sujandi, Han, D. S.; Koo, J. B.; Park, S. E. “Transesterification reactions over morphology controlled amino-functionalized SBA-15 catalysts.” Catal. Commun., 9, 158 ~ 163, 2008.
[31] Tian, B.; Liu, X.; Yu, C.; Gao, F.; Luo, Q.; Xie, S.; Tu, B.; Zhao, D. “Microwave assisted template removal of siliceous porous materials Chem. Commun., 11, 1186 ~ 1187, 2002.
[32] Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. “Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwave-Hydrothermal Conditions.” Chem. Mater., 13, 552 ~ 557, 2001.
[33] Zhang, L.; Yu, C.; Zhao, W.; Zile, Hua; Chen H., Li L., Shi J. “Preparation of multi-amine-grafted mesoporous silicas and their application to heavy metal ions adsorption.” J. Non-Cryst. Solids., 353, 4055 ~ 4061, 2007.
[34] Tiemann M. “Repeated Templating.” Chem. Mater., 20, 961 ~ 971, 2008.
[35] Zhang, X.; Guan, R. F.; Wu, D. Q.; Chan, K.Y. “Enzyme immobilization on amino-functionalized mesostructured cellular foam surfaces, characterization and catalytic properties.” J. Mol. Catal. B: Enzym., 33, 1-2, 43 ~ 50, 2005.
[36] Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H. “CO2 Capture by As-Prepared SBA-15 with an Occluded Organic Template.” Adv. Func. Mater., 16, 13, 1717 ~ 1722, 2006.
[37] Sun, Y.; Liu, X.W.; Su, W.; Zhou, Y.; Zhou, L. “Studies on ordered mesoporous materials for potential environmental and clean energy applications.” Appl. Surface Sci., 253, 13, 5650 ~ 5655, 2007.
[38] Luan, Z.; Cheng, C. F.; He, H.; Klinowski, J. “Thermal Stability of Structural Aluminum in the Mesoporous Molecular Sieve MCM-41.” J. Phys. Chem., 99, 26, 10590 ~ 10593, 1995.
[39] Cheng, C. F.; He, H.; Zhou, W.; Klinowski, J.; Gonc?alves, J. A. S.; Gladden, L.F. “Synthesis and Characterization of the Gallosilicate Mesoporous Molecular Sieve MCM-41.” J. Phys. Chem., 100, 1, 390 ~ 396, 1996.
[40] Cheng, C. F.; Alba, M. D.; Klinowski, J. “The unit cell of the gallosilicate mesoporous molecular sieve [Si,Ga]-MCM-41 is significantly smaller than in the purely siliceous [Si]-MCM-41.” Chem. Phys. Lett., 250, 3, 38 ~ 334, 1996.
[41] Corma, A.; Navarro, M. T.; Pariente, J. P. “Synthesis of an Ultralarge Pore Titanium Silicate lsomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons.” J. Chem. Soc., Chem. Commun., 2, 147 ~ 148, 1994.
[42] Park, D. H.; Cheng, C. F.; He, H.; Klinowski, J. “Synthesis and characterization of vanadosilicate mesoporous molecularsieves MCM-41.” J. Mater. Chem., 7, 1, 159 ~ 162, 1997.
[43]呂宗昕,圖解奈米科技與光觸媒,商周出版,2003
[44] Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. “Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications.” Adv. Mater., 18, 21, 2807 ~ 2824, 2006.
[45] Konstantinou, I. K.; Triantafyllos A. Albanis, T. A. “Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways.” Appl. Catal., B., 42 , 4, 319 ~ 335, 2003.
[46] Hummel, F. A., "Introduction to Phase Equilibria in Ceramic Systems" , 39, Baker & Taylor Books, 1984.
[47] Diebold U. “The surface science of titanium dioxide.” Sur. Sci. Rep., 48, 5-8, 53 ~ 229, 2003.
[48] 高濂、鄭珊、張青虹,奈米光觸媒,初版,五南圖書出版股份有限公司,台北市,民國93年。
[49] Morey, M. S.; O'Brien, S.; Schwarz, S.; Stucky, G. D. “Hydrothermal and Postsynthesis Surface Modification of Cubic, MCM-48, and Ultralarge Pore SBA-15 Mesoporous Silica with Titanium.” Chem. Mater., 12, 4, 898 ~ 911, 2000.
[50] Sinha, A. K.; Seelan, S.; Akita, T.; Tsubota, S.; Haruta, M. “Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes.” Appl. Catal., A., 240, 1-2, 243 ~ 252, 2003.
[51] Hua, Z.; Bu, W.; Yuxiang Lian, Y.; Chen, H.; Li, L.; Zhang, L.; Li, C.; Shi, J. “Post-grafting preparation of large-pore mesoporous materials with localized high content titanium doping.” J. Mater. Chem., 15, 6, 661 ~ 665, 2005.
[52] Kim, M. J.; Chang, S.; Choi, J. S.; Ahn, W. S. “PHYSICOCHEMICAL PROPERTIES OF Ti-GRAFTED SBA-15.” React. Kinet. Catal. Lett., 82, 1, 27 ~ 32, 2004.
[53] Zheng, S.; Gao, L.; Zhang, Q.; Guo, J. “Synthesis, characterization and photocatalytic properties of titania-modified mesoporous silicate MCM-41.” J. Mater. Chem., 10, 723 ~ 727, 2000.
[54] Hsien, Y.; Chang, C.; Chen, Y.; Cheng, S. “Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves.” Appl. Catal., B., 31, 241 ~ 249, 2001.
[55] Van Grieken, R.; Sotelo, J. L.; Martos, C.; Fierro, J. L. G.; Lopez-Granados, M.; Mariscal, R. “Surface modified amorphous titanosilicate catalysts for liquid phase epoxidation.” Catal. Today., 61, 1-4, 49 ~ 54, 2000.
[56] Kang, M.; Hong, W.; Park, M. “Synthesis of high concentration titanium-incorporated nanoporous silicates (Ti-NPS) and their photocatalytic performance for toluene oxidation.” Appl. Catal., B., 53, 3, 195 ~ 205, 2004.
[57] Wittmann, G.; Demeestere, K.; Andr?s Dombi, A.; Dewulf, J.; Langenhove, H. V. “Preparation, structural characterization and photocatalytic activity of mesoporous Ti-silicates.” Appl. Catal., B., 61,1-2, 47 ~ 57, 2005.
[58] Corma, A.; Navarro, M. T.; Perez Pariente, J. “Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons.” J. Chem. Soc., Chem. Commun., 147 ~ 148, 1994.
[59] Chen, Y.; Huang, Y.; Xiu, J.; Han, X.; Bao, X. “Direct synthesis, characterization and catalytic activity of titanium-substituted SBA-15 mesoporous molecular sieves.” Appl. Catal., A., 273, 1-2, 185 ~ 191, 2004.
[60] Ertl, G.; Kn?zinger, H.; Sch?th, F.; Weitkamp, J. (Eds.), Handbook of Heterogeneous Catalysis., Vol 2, 2nd, WILRY-VCH Verlag GmbH&Co. KGaA, Weinheim, 2008.
[61] Brunaller, S.; Emmett, P. H.; Teller, E. “Adsorption of Gases in Multimolecular Layers.” J. Am. Chem. Soc., 60, 2, 309 ~ 319, 1938.
[62] Barrett, E. P. Leslie G. Joyner, L. G.: Paul P. Halenda, P. P. “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms.” J. Am. Chem. Soc., 73, 1, 373 ~ 380, 1951.
[63] Kim, S. Y.; Lim, T. H:, Chang, T. S.; Shin C. H. “"Photocatalysis of methylene blue on titanium dioxide nanoparticles synthesized by modified sol-hydrothermal process of TiCl4." Cat. Lett., 117, 3-4, 112 ~ 118, 2007.
[64] Hsien, Y. H., Chang, C. F., Chen, Y. H., Cheng S. “Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves." Appl. Catal., B., 31, 4, 241 ~ 249, 2001.
[65] Busuioc, A.M.; Meynen, V.; Beyers, E.; Cool, P.; Bilba, N., Vansant, E. F. "Growth of anatase nanoparticles inside the mesopores of SBA-15 for photocatalytic applications." Catal. Comm., 8, 3, 527 ~ 530, 2007.
[66] Hung, W. C.; Fu, S. H.; Tseng, J. J.; Chu, H.; Ko, T. H. "Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method." Chemosphere, 66, 11, 2142 ~ 2151, 2007.
[67] Panizza, M.; Barbucci, A.; Ricotti, R.; Cerisola, G. "Electrochemical degradation of methylene blue." Sep. Purif. Technol., 54, 382 ~ 387, 2007.
[68] Saquib, M.; Muneer, M. "TiO2-mediated photocatalytic degradation of a triphenylmethane dye ( gentian violet ), in aqueous suspensions." Dyes and Pigments, 56, 1, 37 ~ 49, 2003.
[69] Dong, W.; Sun, Y.; Lee, C. W.; Hua, W.; Lu, X.; Shi, Y.; Zhang, S.; Chen, J.; Zhao, D. “Controllable and Repeatable Synthesis of Thermally Stable Anatase Nanocrystal-Silica Composites with Highly Ordered Hexagonal Mesostructures.” J. Am. Chem. Soc., 129, 45, 13894 ~ 13904, 2007.
[70] Yoneyama, H.; Y. Toyoguchi, Y.; Tamura, H. “Reduction of Methylene Blue on Illuminated Titanium Dioxide in Methanolic and Aqueous Solutions,” J. Phys. Chem., 76, 23, 3460 ~ 3464, 1972.
[71] Wu, P.; Komatsu, T. T.; Yashima, T. “Postsynthesis, Characterization, and Catalytic Properties in Alkene Epoxidation of Hydrothermally Stable Mesoporous Ti-SBA-15.” Chem. Mater., 14, 4, 1657 ~ 1664, 2002.
[72] Duran, A.; Serna, C.; Fornes, V.; Navarro, J. M. F. “Structural considerations about SiO2 glasses prepared by sol-gel,” J. Non-Cryst. Solids., 82, 1-3, 69 ~ 77, 1986.
[73] Liu, Z.; Quan, X.; Fu, H.; Li, X.; Yang, K. “Effect of embedded-silica on microstructure and photocatalytic activity of titania prepared by ultrasound-assisted hydrolysis.” Appl. Catal., B., 52, 1, 33 ~ 40, 2004.
[74] Balachandran, U. and Eror, N.G. “Raman-spectra of titanium-dioxide.” J. Solid State Chem. 42, 3, 276 ~ 282, 1982.
[75] Greegor, R. B.; Lytle, F. W.; Sandstrom, D. R.; Wong, J.; Schultz, P “Investigation of TiO2-SiO2 glasses by X-ray absorption spectroscopy.” J. Non-Cryst. Solids., 55, 1, 27 ~ 42, 1983.
[76] Babonneau, F.; Doeuff, S.; Leaustic, A.; Sanchez, C.; Cartier, C.; Verdaguer, M. “XANES and EXAFS study of titanium alkoxides.” Inorg. Chem., 27, 18, 3166 ~ 3172, 1988.
[77] Joint Committee for Powder Diffraction Files, No.211272.
[78] Busuioc, A. M.; Meynen, V.; Beyers, E.; Mertens, M.; Cool, P.; Bilba, N.; Vansant, E. F. “Structural features and photocatalytic behaviour of titania deposited within the pores of SBA-15.” Appl. Catal., A., 312, 153 ~ 164, 2006.
指導教授 簡淑華、高憲明 審核日期 2009-2-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明