類別:<u>資工類</u> 科目:<u>離散數學與線性代數</u>共<u>3</u>頁第<u>1</u> 第 *請在試卷答案卷(卡)內作答本科考試禁用計算器

複選題(答對給5分,答錯或不答給0分,不倒扣)

- 1.(5%) If square matrix $A = [a_{ij}]$ has eigenvalues λ_1 , λ_2 , ..., λ_n and corresponding linearly-independent eigenvectors e_1 , e_2 , ..., e_m . Which are correct ? (A) If m = n, A is diagonalizable. (B) If A is diagonalizable, it is possible for $\lambda_i = \lambda_j$, $i \neq j$. (C) $a_{11} + ... + a_{nn} = \lambda_1 + ... + \lambda_n$. (D) $\{e_1, e_2, ..., e_m\}$ is always a basis of a subspace of R^n . (E) If $e_i = a + ib$, then a and b are always linearly independent.
- 2.(5%) If A is a $m \times n$ matrix, W is the set of all columns of A, and W^{\perp} is the orthogonal complement of W, then (A) W is always a subspace. (B) W^{\perp} is always a subspace. (C) $(W^{\perp})^{\perp} = W$. (D) The intersection of W and W^{\perp} is always not an empty set. (E) dim $W^{\perp} + \dim (W^{\perp})^{\perp} = n$.
- 3.(5%) If inconsistent linear system Ax = b has a least-square solution \hat{x} and $A = [a_1 \ a_2 \ ... \ a_n]$, which are correct? (A) \hat{x} is always existed. (B) \hat{x} is always unique. (C) $A \hat{x}$ is always in $span\{a_1, a_2, ..., a_n\}$. (D) $\hat{x} = (A^TA)^{-1}A^Tb$. (E) $A \hat{x} = b$ is orthogonal to rows of A.
- 4.(5%) If A can be QR factorization, which are correct? (A) A is a square matrix. (B) A has linearly independent columns. (C) $QQ^T = I$, where I is an identity matrix. (D) Q has positive entries on its diagonal. (E) R is invertible.
- 5.(5%) If A is a symmetric matrix. Which are correct? (A) A is always diagonalizable. (B) A has linearly independent eigenvectors. (C) A always has real eigenvalues. (D) The eigenvalues of A are always positive. (E) A can always be spectral decomposed, $A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + ... + \lambda_n u_n u_n^T$.
- 6.(5%) Suppose that $n \times n$ matrix A is invertible. Which of the following statements are true? (A) The row vectors of A should be linearly independent. (B) $\det(A)=0$ (C) A does not have eigenvalue 0. (D) The rank of A is n. (E) Ax=0 has nontrivial solution.
- 7.(5%) Suppose that A and B are two square matrices. Determine which of the following are true. (A) $\det(AB) = \det(A)\det(B)$. (B) $\det(A) = \det(A^T)$. (C) $\det(AB) = \det(BA)$. (D) $\det(A^{-1}) = 1/\det(A)$ if A^{-1} exists. (E) $\det(A^k) = (\det(A))^k$.
- 8.(5%) Determine which of the following statements are true. (A) $W = \{\{x,y\} \mid x+y=1\}$ is a subspace. (B) $W = \{\{x,y\} \mid x>3y\}$ is a subspace. (C) Suppose that W_1 and W_2 are two subspaces. Then $W_1 \cap W_2$ is also a subspaces. (D) Suppose that W_1 and W_2 are two subspaces. Then

 $W_1 \cup W_2$ is also a subspace. (E) $W = \{\{a_0 + a_1x + a_2x^2\} \mid a_0, a_1, a_2 \text{ are scalar, and } a_2 \neq 0\}$ is a subspace.

9.(5%) Suppose that $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ and

 $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ are the standard matrices of the two

transformations, T_1 and T_2 , respectively. Which of the following statements are correct? (A) T_1 is a linear transformation. (B) T_1 is the transformation that counter-clockwisely rotates each vector through an angle θ . (C) T_1 is the transformation that clockwisely rotates each vector through an angle θ . (D) $A^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$. (E) T_2 is the

transformation that orthogonally projects each vector onto x- axis.

10. (5%) Suppose that two $n \times n$ matrices, A and B, are orthogonal. Which of the following statements are correct? (A) A^{-1} is orthogonal. (B) $\det(A) = 1$ or -1. (C) Columns of A form an orthonormal set in R^n with the Euclidean inner product. (D) AB is an orthogonal matrix. (E) $A^TABB^T=I$, where I is an identity matrix.

多選題(每一選項單獨計分,答錯每選項倒扣1分)

- 11. (5%) Given a function f from A to B and f(a) = b (where $a \in A$ and $b \in B$, which of the following statements are correct?
 - (A) A is the domain of f.
 - (B) B is the range of f.
 - (C) $f \in B^A$.
 - (D) b is the image of a under f.
 - (E) a is the pre-image of b under f.
- 12. (5%)Given the following piece of code, which of the following statements are correct?

int Fibonacci(int n)

begin

if
$$(n == 0)$$
 or $(n == 1)$

return 1;

else

return Fibonacci(n-1) + Fibonacci(n-2);

end

- (A) This function computes Fibonacci series.
- (B) This is a recursive function.

注:背面有試題

國立中央大學103學年度碩士班考試入學試題卷

類別:資工類 科目:離散數學與線性代數 共 3 頁 第 2 頁 *請在試卷答案卷(卡)內作答本科考試禁用計算器

- (C) The growth rate of this function is proportional to the current value of the function.
- (D) The time complexity T(n), where n is the argument of the function, is also a Fibonacci series.
- (E) The time complexity can be reduced if the function is designed to be iterative.
- 13. (5%)Which of the following statements about basic number theory are correct?
 - (A) a|0 for any a.
 - (B) If a and b are positive integers, then there exist integers s and t such that gcd(a, b) = sa + tb.
 - (C) If m is a prime integer, then an inverse of a modulo m exists.
 - (D) To satisfy equations $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, and $x \equiv 3 \pmod{7}$, 52 is the only solution.
 - (E) If p is prime and a is an integer not divisible by p, then $a^p \equiv a \pmod{p}$.
- 14. (5%)There are 80 students in the class, which of the following statements are correct according to the pigeonhole principle?
 - (A) There is at least one student's birthday in each and every week.
 - (B) There are at most 2 students whose birthday are in the same week.
 - (C) There is at least one week in which at least 2 students have birthday.
 - (D) There are at least seven students who were born with the same astrological sign (星座).
 - (E) There is at most one astrological sign (星座) to which more than seven students belong.
- 15. (5%) Which of the following statements about hypercube are correct?
 - (A) Q_0 has 1 node.
 - (B) For any integer n > 1, the hypercube Q_n is a simple graph consisting of four copies of Q_{n-1} connected together at corresponding nodes.
 - (C) Q_n has 2^n nodes.
 - (D) The recurrence relation of the number of edges for Q_n , denoted as E(n), is $E(n) = 2E(n-1) + 2^n$.
 - (E) Q_n has $n \cdot 2^{n-1}$ edges.

- 16. (5%)The worst case time complexity for Euclid's algorithm to find gcd(a,b) (a,b in Z) is (suppose n=(max(a,b))): (A) θ (n). (B) $O(\log(n))$. (C) θ $(\log(n))$. (D) θ $(n\log(n))$. (E) none of the above.
- 17. (5%)Among the following options, which are necessary but not sufficient conditions for the corresponding goals?
 - (A) "A set of total-order predicates" for "applying mathematical induction proof on those predicates".
 - (B) Assume g, f are functions mapping from A to B domains, and C to D, respectively. "B,C are the same domain" for " $(f \circ g)$ composition is possible".
 - (C) "existing exponential time algorithm" for "intractable (NP) problems".
 - (D) "X is a student and X is in the class" for "X is in the class only if X is a student".
 - (E) "f is O(g)" for "f is $\theta(g)$ ".
- 18. (5%)To analyze the complexity of the following procedure P, We will use the following assumptions: Suppose P and Q are both procedures. Q take $\theta(\sqrt{m})$ time to compute, where m is the size of input; each statement line in and outside the loop counts 1 step.

Procedure $P(\text{array1}[a_1, a_2, ..., a_n])$

- 1. if *n*<5 exit.
- 2. declare initially new empty array2, array3;
- 3. call *Q* (array1);
- 4. for (i=1 to n) {
- 5. if $((i \mod 5) = 1)$ { insert a_i into array2;}
- 6. if $((i \mod 5) = 3)$ { insert a_i into array3;}
- 7. call *P*(array2);
- 8. call *P*(array3);
- 9. return();

Suppose n is a number of power of 5, What can be the time complexity level of the procedure P in the question above?

- (A) $\theta(n)$ (B) $\theta(\sqrt{n}\log n)$ (C) $\theta(\sqrt{n})$ (D) $O(n^{\log_5 2})$
- $(E) O(\sqrt{n} \log n)$

國立中央大學103學年度碩士班考試入學試題卷

類別: 資工類 科目: 離散數學與線性代數 共 3 頁 第 3 頁 *請在試卷答案卷(卡)內作答本科考試禁用計算器

- 19. (5%)We want to count the number of ways to climb n stairs if the climbing person can take one stair or two stairs at a time. What of the following can be the recurrence relation for our question? (initial condition: $a_0 = 1$; $a_1 = 1$;)
 - (A) $a_n = a_{n-1} + 1$.
 - (B) $a_n = a_{n-2} + 3$.
 - (C) $a_n = 2a_{n-2} + 1$.
 - (D) $a_n = a_{n-1} + a_{n-2}$.
 - (E) none of the above.

- 20. (5%)To solve the recurrence relation in 19., what can be the generating function f(z)?
 - (A) $f(z) = 1/(1-z-z^2)$.
 - (B) $f(z) = z/(1-z-z^2)$.
 - (C) $f(z) = \frac{1}{\sqrt{5}} \cdot (\frac{1}{1 ((1 + \sqrt{5})/2)z} \frac{1}{1 + ((1 \sqrt{5})/2)z})$
 - (D) $f(z) = \frac{2}{1-z} + \frac{2-3z}{(1+2z)^2}$.
 - (E) none of the above.