博碩士論文 93224006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.22.250.200
姓名 陳賢明(Hieng-Ming Ting)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 第三群LEA蛋白質表現與功能分析
(Functional analysis of group 3 LEA proteins)
相關論文
★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析★ 植物逆境蛋白質基因啟動子與功能分析
★ 植物受溫度調控之基因的功能與機制分析★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討
★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析★ 受熱與ABA調控基因AtRZFP33之生理功能分析
★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究
★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析
★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) LEA (Late embryogenesis abundant) 蛋白質在種子發育的後期被大量合成,他亦可以受乾燥逆境和離層酸 (ABA) 處理誘導產生。LEA蛋白質廣泛存在植物和動物中,依據其胺基酸組成的特性及保守性序列可分成為5大類。其中第三大類LEA蛋白質的特徵是含有一段高度重覆的11個胺基酸的結構。受ABA誘導的HVA1屬第三大類LEA蛋白質,將其轉殖並大量表現在水稻,小麥和燕麥時,可使轉殖株對逆境具有較高的忍受度。本研究欲分析HVA1在雙子葉植物的生理功能,並且找出HVA1的功能性區域。大量表現HVA1及HVA1片段的阿拉伯芥 (Arabidopsis) 轉殖株,在正常生長條件及逆境(乾旱及冷凍)條件下,發現沒有造成性狀和形態上的差異。但轉殖HVA1的N端區域 (第1至第102胺基酸)的阿拉伯芥,在種子萌芽期間,顯示高鹽和高滲透壓的忍受度。根據研究結果推論, HVA1的N端區域 (第1至第102胺基酸)足以承受逆境的忍受度。除此之外,Ose730-GFP融合蛋白質在細胞的暫時性表現研究中,證實水稻的第三大類LEA蛋白質表現在細胞核和細胞質。
摘要(英) Late embryogenesis abundant (LEA) proteins are synthesized abundantly during late stage of seed development and can be induced by desiccation stress and/or ABA treatment. LEA proteins are widely found in plant and animal systems and classified into 5 groups according to amino acid sequences and conserved motifs. Interestingly, a tandem repeat motif of 11 amino acids is found in the group 3 LEA proteins. An ABA-responsive barley (Hordeum vulgare L.) gene HVA1, encodes a group 3 LEA protein and can improve stress tolerance when transformed into rice, wheat and oat. Here we try to analyze the physiological function of HVA1 in dicot and delineate the functional domain of HVA1. Overexpressing HVA1 variants in Arabidopsis did not change the phenotype and morphology of plants under normal or stress (drought and freezing) conditions. However, transgenic Arabidopsis plants overexpressing N-terminal region of HVA1 (amino acid residues 1 through 102 in the N-terminal region of HVA1), showed higher salt and hyperosmotic stress tolerance than that of wild-type and other transgenic lines during seed germination. These results suggest that N-terminal region of HVA1 (N1~102) is sufficient to confer stress tolerance. Furthermore, transient expression of Ose730-GFP fusion protein in cells demonstrated that rice LEA 3 protein was localized in both nuclei and cytoplasm.
關鍵字(中) ★ 阿拉伯芥
★ 離層酸
關鍵字(英) ★ Arabidopsis
★ ABA
論文目次 Chinese abstract…………………………………i
Abstract…………………………………………………………ii
Contents………………………………………………………iii
Table contents…………………………………………………………vi
Figure contents……………………………………………………………vii
Appendix contents………………………………………………viii
List of abbreviations………………………………………………ix
Chapter 1. Introduction………………………………………………1
1.1 The environmental stresses………………………………………………1
1.2 The properties of LEA proteins………………………………2
1.3 The classification of LEA proteins……………………3
1.4 Physiological functions of Group 3 LEA proteins…………5
1.5 History of HVA1……………………………………………6
1.6 History of Ose730…………………………………………6
1.7 Specific aim of this thesis……………………………7
Chapter 2. Materials and Methods…………………………………8
2.1 Materials…………………………………………………8
(A) Plant material…………………………………8
(B) Microbial material……………………………8
(C) Plasmid consturctions…………………………8
35S promoter::HVA1 and HVA1 variants ……………………8
2.2 Methods………………………………………………………9
2.2.1 Gene cloning………………………………9
(A) Preparation of E.coli competent cell……………………………………9
(B) Polymerase Chain Reaction (PCR)…………………………………………10
(C) Ligation and transformation……………………………………………11
(D) Preparation of plasmid DNA…………………………………………12
(E) Gel elution………………………………………………………………12
2.2.2 Plant transformation and stress assay…………………………………………13
(A) Agrobacterium competent cell preparation……………………………………13
(B) Agrobacterium competent cell transformation………………………………14
(C) Floral dipping……………………………………………………………14
(D) Selection of transgenic plants………………………………………………15
(E) Histochemical staining………………………………………………………16
(F) Germination and growth conditions of transgenic plants………………16
(G) Plant genomic DNA extraction……………………………………………17
(H) Plant genomic PCR…….…………………………………………………17
(I) Total protein extraction.………………………………………………………18
(J) Western blotting………………………………………………………………18
(K) Germination assay…………………………………………………………20
(L) Growth measurements……………………………………………………20
(M) Drought test………………………………………………………………21
(N) Freezing test……………………………………………………………21
(O) Electrolyte leakage test………………………………………………21
2.2.3 Hydropathy profile analysis…………………………………………22
2.2.4 Localization analysis of rice Ose730………………………………22
2.2.4.1 Transient expression assay in Arabidopsis mesophyll protoplast……22
(A) Isolation Arabidopsis mesophyll protoplast……………………………………22
(B) Plasmid transfection by the PEG/Ca2+.……………………………………24
(C) Confocal Microscope analysis………………………………………………25
2.2.4.2 Transient expression assay in onion epidermal cells……………………25
(A) Preparation of onion epidermal layer……………………………………25
(B) Preparation of gold particles……………………………………………25
(C) Coating DNA to gold particles…………………………………………26
(D) Bombardment and analysis………………………………………………26
2.2.4.3 Rice stable transformation………………………………………26
(A) Induction of rice embryogenic callus……………………………………29
(B) Transformation of immature callus…..…………………………30
(C) Resistant callus selection and plant regeneration………………………30
Chapter 3. Results………………………………………………………………31
3.1 Sequence analysis of HVA1………………………………………………………31
3.2 Identification of transgenic Arabidopsis plants………………………………32
3.3 Protein expression of transgenic Arabidopsis…………………………………33
3.4 Characterization of transgenic Arabidopsis overexpressing HVA1 variants…33
3.5 Stress tolerance assay………………………………………………………34
(1) Seed germination assay…………………………………………………………34
(2) Root growth assay……………………………………………………………35
(3) Membrane leakage assay………………………………………………………36
(4) Drought test……………………………………………………………………36
(5) Freezing test…………………………………………………………………37
3.6 Cellular localization analysis of rice Ose730……………………………………37
(1)Transient expression analysis in Arabidopsis mesophyll cells………………37
(2)Transient expression analysis in onion epidermal cells………………………37
(3)Transient expression analysis in transgenic rice callus………………………38
(4)Stable transgenic rice ………………………………………………………………38
Chapter 4. Discussion……………………………………………………………39
4.1 Potential functional domain of HVA1………………………………………………39
4.2 The expressed HVA1 protein is unstable in T3 plants……………………40
4.3 Transgenic plants develop normally…………………………………………41
4.4 Functional redundancy of Arabidopsis LEA 3 proteins……………………41
4.5 Rice Ose730 may play a function in cytoplasm…………………………45
References…………………………………………………………………………46
參考文獻 Almoguera, C., and Jordano, J. (1992). Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol 19, 781-792.
Arenas-Mena, C., Raynal, M., Borrell, A., Varoquaux, F., Cutanda, M.C., Stacy, R.A., Pages, M., Delseny, M., and Culianez-Macia, F.A. (1999). Expression and cellular localization of Atrab28 during arabidopsis embryogenesis. Plant Mol Biol 40, 355-363.
Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C., and Thomashow, M.F. (1996). Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A 93, 13404-13409.
Babu, R.C., Zhang, J., Blum, A., Ho, D.T.-H., Wu, R., and Nguyen, H.T. (2004). HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science 166, 855-862.
Bahieldin, A., Mahfouz, H.T., Eissa, H.F., Saleh, O.M., Ramadan, A.M., Ahmed, I.A., Dyer, W.E., El-Itriby, H.A., and Madkour, M.A. (2005). Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiologia Plantarum 123, 421-427.
Baker, J., Steele, C.V., and Dure, L., 3rd. (1988). Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11, 277-291.
Bartels, D., and Salamini, F. (2001). Desiccation Tolerance in the Resurrection Plant Craterostigma plantagineum. A Contribution to the Study of Drought Tolerance at the Molecular Level. Plant Physiol 127, 1346-1353.
Bies, N., Aspart, L., Carles, C., Gallois, P., and Delseny, M. (1998). Accumulation and degradation of Em proteins in Arabidopsis thaliana; evidence for post-transcriptional controls. J. Exp. Bot. 49, 1925-1933.
Borrell, A., Cutanda, M.C., Lumbreras, V., Pujal, J., Goday, A., Culianez-Macia, F.A., and Pages, M. (2002). Arabidopsis thaliana atrab28: a nuclear targeted protein related to germination and toxic cation tolerance. Plant Mol Biol 50, 249-259.
Boyer, J.S. (1982). Plant productivity and environment. Science 218, 443-448.
Bray, E.A. (1993). Molecular Responses to Water Deficit. Plant Physiol 103, 1035-1040.
Bray, E.A. (1997). Plant responses to water deficit. Trends Plant Sci 2, 48-54.
Bray, E.A., Bailey-Serres, J., and Weretilnyk, E. (2000). Responses to abiotic stresses. In Biochemistry and Molecular Biology of Plants. Edited by Greissem W, Buchannan B, Jones R. American Society of Plant Physiologists, 1158-1249.
Browne, J., Tunnacliffe, A., and Burnell, A. (2002). Anhydrobiosis: plant desiccation gene found in a nematode. Nature 416, 38.
Campbell, S.A., and Close, T.J. (1997). Dehydrins: genes, proteins, and associations with phenotypic traits The New Phytologist 137, 61-74.
Chen, Z.Y., Hsing, Y.-I.C., Lee, P.F., and Chow, T.Y. (1992). Nucleotide sequences of a soybean cDNA encoding an 18 kilodalton late embryogenesis abundant protein. Plant Physiol 99, 773-774.
Cheng, Z., Targolli, J., Huang, X., and Wu, R. (2002). Wheat LEA genes, PMA80 and PMA1959 enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10, 71-82.
Close, T.J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plantarum 97, 795-803.
Curry, J., Morris, C.F., and Walker-Simmons, M.K. (1991). Sequence analysis of a cDNA encoding a group 3 LEA mRNA inducible by ABA or dehydration stress in wheat. Plant Mol Biol 16, 1073-1076.
Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., and Sarhan, F. (1998). Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10, 623-638.
Dure, L., 3rd. (1993). A repeating 11-mer amino acid motif and plant desiccation. Plant J 3, 363-369.
Dure, L., 3rd, Crouch, M.M., Harada, J., Ho, T.H.-D., Mundy, J., Quatrano, R.S., Thomas, T., and Sung, Z.R. (1989). Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12, 475-486.
Espelund, M., Saeboe-Larssen, S., Hughes, D.W., Galau, G.A., Larsen, F., and Jakobsen, K.S. (1992). Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J 2, 241-252.
Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2005). AREB1 Is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488.
Galau, G.A., Hughes, D.W., and Dure, L., 3rd. (1986). Abiscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol 7, 155-170.
Gaubier, P., Raynal, M., Hull, G., Huestis, G.M., Grellet, F., Arenas, C., Pages, M., and Delseny, M. (1993). Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet 238, 409-418.
Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124, 1854-1865.
Goyal, K., Walton, L.J., and Tunnacliffe, A. (2005). LEA proteins prevent protein aggregation due to water stress. Biochem J 388, 151-157.
Goyal, K., Tisi, L., Basran, A., Browne, J., Burnell, A., Zurdo, J., and Tunnacliffe, A. (2003). Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278, 12977-12984.
Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M.H., Grunwald, D., and Macherel, D. (2005). Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137, 157-167.
Haseloff, J., Siemering, K.R., Prasher, D.C., and Hodge, S. (1997). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants rightly. PNAS 94, 2122-2127.
Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F., and Randall, S.K. (2002). The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130, 675-687.
Hong, B., Uknes, S.J., and Ho, T.H. (1988). Cloning and characterization of a cDNA encoding a mRNA rapidly induced by ABA in barley aleurone layers. Plant Mol Biol 11, 495-506.
Hong, B., Barg, R., and Ho, T.H. (1992). Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol 18, 663-674.
Honjoh, K., Yoshimoto, M., Joh, T., Kajiwara, T., Miyamoto, T., and Hatano, S. (1995). Isolation and characterization of hardening-induced proteins in Chlorella vulgaris C-27: identification of late embryogenesis abundant proteins. Plant Cell Physiol 36, 1421-1430.
Honjoh, K.I., Matsumoto, H., Shimizu, H., Ooyama, K., Tanaka, K., Oda, Y., Takata, R., Joh, T., Suga, K., Miyamoto, T., Iio, M., and Hatano, S. (2000). Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64, 1656-1663.
Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S., and Sarhan, F. (1995). Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8, 583-593.
Imai, R., Chang, L., Ohta, A., Bray, E.A., and Takagi, M. (1996). A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170, 243-248.
Ingram, J., and Bartels, D. (1996). The Molecular Basis of Dehydration Tolerance in Plants. Annu Rev Plant Physiol Plant Mol Biol 47, 377-403.
Iturriaga, G., Schneider, K., Salamini, F., and Bartels, D. (1992). Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20, 555-558.
Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17, 287-291.
Kaye, C., Neven, L., Hofig, A., Li, Q.B., Haskell, D., and Guy, C. (1998). Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol 116, 1367-1377.
Kim, H.S., Lee, J.H., Kim, J.J., Kim, C.H., Jun, S.S., and Hong, Y.N. (2005). Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344, 115-123.
Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Higashi, K., Satoh, S., Kamada, H., and Harada, H. (1992). Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Mol Biol 19, 239-249.
Koag, M.C., Fenton, R.D., Wilkens, S., and Close, T.J. (2003). The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131, 309-316.
Kyte, J., and Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105-132.
Lipka, V., and Panstruga, R. (2005). Dynamic cellular responses in plant-microbe interactions. Curr Opin Plant Biol 8, 625-631.
Lisse, T., Bartels, D., Kalbitzer, T., and Jaenicke, R. (1996). The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol Chem 377, 555-561.
Litts, J.C., Colwell, G.W., Chakerian, R.L., and Quatrano, R.S. (1987). The nucleotide sequence of a cDNA clone encoding the wheat Em protein. Nucleic Acids Res 15, 3607-3618.
Liu, Y., and Zheng, Y. (2005). PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331, 325-332.
Meza, T.J., Stangeland, B., Mercy, I.S., Skarn, M., Nymoen, D.A., Berg, A., Butenko, M.A., Hakelien, A.M., Haslekas, C., Meza-Zepeda, L.A., and Aalen, R.B. (2002). Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 30, 4556-4566.
Moons, A., De Keyser, A., and Van Montagu, M. (1997). A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191, 197-204.
Moons, A., Bauw, G., Prinsen, E., Van Montagu, M., and Van der Straeten, D. (1995). Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107, 177-186.
NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P., and Sarhan, F. (2002). Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129, 1368-1381.
Niogret, M.F., Culianez-Macia, F.A., Goday, A., Mar Alba, M., and Pages, M. (1996). Expression and cellular localization of rab28 mRNA and Rab28 protein during maize embryogenesis. Plant J 9, 549-557.
Oraby, H.F., Ransom, C.B., Kravchenko, A.N., and Sticklen, M.B. (2005). Barley HVA1 gene confers salt tolerance in R3 transgenic Oat. Crop Science 45, 2218-2227.
Park, B.-J., Liu, Z., Kanno, A., and Kameya, T. (2005). Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Science 169, 553-558.
Piatkowski, D., Schneider, H., Salamini, F., and Bartels, D. (1990). Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiol 94, 1682-1688.
Puhakainen, T., Hess, M.W., Makela, P., Svensson, J., Heino, P., and Palva, E.T. (2004). Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54, 743-753.
Ried, J.L., and Walker-Simmons, M.K. (1993). Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.). Plant Physiol 102, 125-131.
Riera, M., Figueras, M., Lopez, C., Goday, A., and Pages, M. (2004). Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci U S A 101, 9879-9884.
Rinne, P.L., Kaikuranta, P.L., van der Plas, L.H., and van der Schoot, C. (1999). Dehydrins in cold-acclimated apices of birch (Betula pubescens ehrh. ): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209, 377-388.
Roberts, J.K., DeSimone, N.A., Lingle, W.L., and Dure, L., 3rd. (1993). Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos. Plant Cell 5, 769-780.
Rohila, J.S., Jain, R.K., and Wu, R. (2002). Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley HVA1 cDNA. Plant Science 163, 525-535.
Russouw, P.S., Farrant, J., Brandt, W., and Lindsey, G.G. (1997). The most prevalent protein in a heat-treated extract of pea (Pisum sativum) embryos is an LEA group I protein; its conformation is not affected by exposure to high temperature. Seed Sci. Res. 7, 117-123.
Schubert, D., Lechtenberg, B., Forsbach, A., Gils, M., Bahadur, S., and Schmidt, R. (2004). Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16, 2561-2572.
Shinozaki, K., and Yamaguchi-Shinozaki, K. (1996). Molecular responses to drought and cold stress. Curr Opin Plant Biol 7, 161-167.
Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.D., and Qu, R. (2000). Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science 155, 1-9.
Soulages, J.L., Kim, K., Walters, C., and Cushman, J.C. (2002). Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis abundant protein from soybean. Plant Physiol 128, 822-832.
Soulages, J.L., Kim, K., Arrese, E.L., Walters, C., and Cushman, J.C. (2003). Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Plant Physiol 131, 963-975.
Stupnikova, I., Benamar, A., Tolleter, D., Grelet, J., Borovskii, G., Dorne, A.J., and Macherel, D. (2006). Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures. Plant Physiol 140, 326-335.
Sutton, F., Ding, X., and Kenefick, D.G. (1992). Group 3 LEA gene HVA1 regulation by cold acclimation and deacclimation in two barley cultivars with varying freeze resistance. Plant Physiol 99, 338-340.
Swire-Clark, G.A., and Marcotte, W.R., Jr. (1999). The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol 39, 117-128.
Thomashow, M.F. (1999). PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50, 571-599.
Tompa, P. (2002). Intrinsically unstructured proteins. Trends Biochem Sci 27, 527-533.
Velten, J., and Oliver, M.J. (2001). Tr288, a rehydrin with a dehydrin twist. Plant Mol Biol 45, 713-722.
Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., and Zhu, J.K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45, 523-539.
Welin, B.V., Olson, A., Nylander, M., and Palva, E.T. (1994). Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol 26, 131-144.
Wise, M.J. (2003). LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4, 52.
Wise, M.J., and Tunnacliffe, A. (2004). POPP the question: what do LEA proteins do? Trends Plant Sci 9, 13-17.
Wolkers, W.F., McCready, S., Brandt, W.F., Lindsey, G.G., and Hoekstra, F.A. (2001). Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544, 196-206.
Wu, S.J., Ding, L., and Zhu, J.K. (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617-627.
Xin, Z., and Browse, J. (1998). Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci U S A 95, 7799-7804.
Xu, D., Duan, X., Wang, B., Hong, B., Ho, T., and Wu, R. (1996). Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110, 249-257.
Yang, H., Saitou, T., Komeda, Y., Harada, H., and Kamada, H. (1997). Arabidopsis thaliana ECP63 encoding a LEA protein is located in chromosome 4. Gene 184, 83-88.
Zhang, L., Ohta, A., Takagi, M., and Imai, R. (2000). Expression of plant group 2 and group 3 LEA genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem (Tokyo) 127, 611-616.
Zhu, B., Choi, D.W., Fenton, R., and Close, T.J. (2000). Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264, 145-153.
指導教授 葉靖輝、賀端華
(Ching-Hui Yeh、Tuan-Hua David Ho)
審核日期 2006-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明