博碩士論文 992204007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.129.13.201
姓名 吳健嘉(Chien-chia Wu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 雄性素依賴型和非依賴型前列腺癌細胞生長和SOCS基因的調節
(Regulation of growth and suppressor of cytokine signaling gene in the androgen-dependent and androgen-independent prostate cancer cells)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文要驗證的假說有胰島素阻抗素和瘦素會差異性調節雄性素依賴型LNCaP-104S和雄性素非依賴型LNCaP-104R1、LNCaP-104R2和PC-3前列腺癌細胞的生長,另一個假說是第一型內皮素會刺激人類前列腺癌細胞SOCS基因表現。結果顯示處理48小時,胰島素阻抗素會刺激LNCaP-104R1、LNCaP-104R2和PC-3而不是LNCaP-104S前列腺癌細胞的增生 (如同增加細胞數目所指示)。瘦素則會刺激LNCaP-104S、LNCaP-104R1和PC-3前列腺癌細胞的增生。這些結果支持我們第一個假說。有趣的是,胰島素阻抗素和瘦素下游SOCS基因表現量在LNCaP-FGC和PC-3細胞有所不同。即使SOCS-1與SOCS-3在LNCaP-FGC細胞是不存在的,所有SOCS家族成員,例如SOCS-1,-2,-3,-4,-5,-6,-7和CIS-1,存在於PC-3細胞和U-937淋巴癌細胞。SOCS-3也是不存在於LNCaP-104S、LNCaP-104R1和LNCaP-104R2細胞。藉由PC-3細胞,我們發現第一型內皮素會促進SOCS-1,-3和-5 mRNA表現量隨著時間和劑量的不同而有所差異並且對其它SOCS家族成員的mRNA量則是沒有作用。除此之外,單獨處理綠茶唲茶素會促進PC-3細胞SOCS-1,-3與-5 mRNA量並且不改變其它SOCS家族成員的mRNA表現。在第一型內皮素存在的情況下,有趣的是發現EGCG會抑制第一型內皮素誘導PC-3細胞SOCS-1,-3與-5 mRNA量。這些研究成果認為EGCG和第一型內皮素會選擇性影響特定SOCS家族成員的種類。就如同部分SOCSs已被證實會調控前列腺癌細胞的生長,這些研究成果也許能解釋脂肪激素和第一型內皮素誘導前列腺癌細胞生長,以及EGCG抑制前列腺癌細胞生長的機制。
摘要(英) The present thesis was to test the hypothesis that resistin and leptin differentially regulated the growth between androgen-dependent LNCaP-104S and androgen-independent LNCaP-104R1、LNCaP-104R2 and PC-3 prostate cancer cells, and the hypothesis that endothelin (ET)-1 stimulated the gene expression of suppressors of cytokine signaling (SOCSs) in human prostate cancer cells. At treating 48 hours, resistin generally induced the proliferation (as indicated by an increased number of cells) of LNCaP-104R1、LNCaP-104R2 and PC-3 rather than LNCaP-104S prostate cancer cells. Leptin induced the proliferation of LNCaP-104S、LNCaP-104R1 and PC-3 prostate cancer cells. These data support our first hypothesis. Interestingly, the expression level of the resistin and leptin downstream SOCS genes were different between LNCaP-FGC and PC-3 cells. Although SOCS-1 and SOCS-3 were absent in the LNCaP-FGC cell, all of SOCS family members, such as SOCS-1, -2, -3, -4, -5, -6, and -7 and CIS-1, present in PC-3 cell and U-937 lymphoma cell. The SOCS-3 was also absent in LNCaP-104S、LNCaP-104R1 and LNCaP-104R2 cells. Using PC-3 cell, we found that ET-1 stimulated increases in levels of SOCS-1, -3, and -5 mRNAs in time and dose-dependent manners and had no effects on mRNA levels of other SOCS family members. In addition, treatment of PC-3 cell with green tea epigallocatechin-3-gallate (EGCG) alone induced increases in levels of SOCS-1, -3 and -5 mRNAs and unaltered mRNA expression of other SOCS family members. In the prescence of ET-1, EGCG was interestingly found to inhibit the ET-1 stimulated increases of SOCS-1, -3 and -5 mRNA levels in PC-3 cell. These data suggest that EGCG and ET-1 selectively affects particular types of SOCS family members. As some of SOCSs have been reported to regulate growth of prostate cancer cells, results of this study may help explain the mechanism in the adipokine and ET-1 stimulation of prostate cancer cell growth, as well as the mechanisms of which EGCG suppresses growth of prostate cancer cells.
關鍵字(中) ★ 胰島素阻抗素
★ 瘦素
★ 第一型內皮素
★ 前列腺癌細胞
關鍵字(英)
論文目次 中文摘要 …………………………………………………………………………Ⅴ
英文摘要 …………………………………………………………………………Ⅵ
誌謝 ………………………………………………………………………………Ⅷ
目錄 ………………………………………………………………………………Ⅸ
表目錄 ……………………………………………………………………………XI
圖目錄 ……………………………………………………………………………XII
縮寫與全名對照 ………………………………………………………………XIII
第一章、 緒論 ………………………………………………………………………1
1. 前列腺癌 (Prostate cancer)………………………………………………1
2. 胰島素阻抗素 (Resistin)…………………………………………………2
3. 瘦素 (Leptin)………………………………………………………………3
4. 第一型內皮素 (Endothelin-1)……………………………………………3
5. SOCS蛋白質 (Suppressor of cytokine signaling)……………………4
6. 研究動機與目的 ……………………………………………………………5
第二章、 實驗材料與方法…………………………………………………………7
1. 材料 …………………………………………………………………………7
2. 細胞培養 ……………………………………………………………………7
3. BrdU滲入法 …………………………………………………………………9
4. RNA萃取 (RNA extraction) ………………………………………………9
5. 反轉錄反應 (Reverse Transcription) …………………………………10
6. 聚合酶鏈反應 (Polymerase Chain Reaction,PCR) ……………………11
7. PCR產物分析 ………………………………………………………………12
8. Real-time PCR (Q-PCR) ……………………………………………………12
9. 統計分析………………………………………………………………………13
第三章、 結果………………………………………………………………………14
1. 胰島素阻抗素影響不同型人類前列腺癌細胞株的生長……………………14
2. 瘦素影響不同型人類前列腺癌細胞株的生長………………………………15
3. 以BrdU assay分析胰島素阻抗素對不同型人類前列腺癌細胞株增生的影響………………………………………………………………………………16
4. 以BrdU assay分析瘦素對不同型人類前列腺癌細胞株增生的影響………17
5. SOCS家族基因存在於人類前列腺癌細胞株…………………………………17
6. 第一型內皮素對PC-3前列腺癌細胞內SOCS基因之影響…………………18
7. EGCG會抑制第一型內皮素對PC-3前列腺癌細胞內SOCS基因之表現……18
第四章、 討論………………………………………………………………………20
1. 胰島素阻抗素會差異性調節不同型人類前列腺癌細胞株之生長………………………………………………………………………………20
2. 瘦素會差異性調節不同型人類前列腺癌細胞株之生長……………………21
3. PC-3雄性素非依賴型與LNCaP-FGC雄性素依賴型前列腺癌細胞,SOCS基因家族是否存在…………………………………………………………………22
4. 第一型內皮素促進PC-3前列腺癌細胞部分SOCS基因表現,具有時間和劑量效應…………………………………………………………………………22
5. EGCG會影響第一型內皮素促進PC-3前列腺癌細胞內SOCS基因表現……23
第五章、 結論………………………………………………………………………26
第六章、 參考文獻…………………………………………………………………27
第七章、 圖表………………………………………………………………………35
第八章、 附錄………………………………………………………………………53
參考文獻 1. Jemal A, Siegel R, Xu J and Ward E (2010) Cancer statistics, 2010. CA Cancer J. Clin. 60:277-300.
2. Cheng L, Montironi R, Bostwick DG, Lopez-Beltran A, Berney DM (2012) Staging of prostate caner. Histopathology 60:87-117.
3. Chiao JW, Moonga BS, Yang YM, Kancherla R, Mittelman A, Wu-Wong JR and Ahmed T (2000) Endothelin-1 from prostate cancer cells is enhanced by bone contact which blocks osteoclastic bone resorption. Br. J. Cancer 83:360-365.
4. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307-312.
5. Kim KH, Lee K, Moon YS, Sul HS (2001) A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J. Biol. Chem. 276-11252-11256.
6. Holcomb IN, Kabakoff RC, Chan B (2000) FIZZ1, a novel cysteine-rich secretated protein associated with pulmonary inflammation, defines a new gene family. EMBO J. 19:4046-4055.
7. Simore ND, Nicuolo FD, Sanguinetti M, Castellani E, D’Asta M, Caforio L, Caruso A (2006) Resistin regulates human choriocarcinoma cell invasive behaviour and endothelial cell angiogenic processes. J. Endocrinol. 189:691-699.
8. Mu H, Ohashi R, Yan S, Chai H, Yang H, Lin P, Yao Q, Chen C (2006) Adipokine resistin promotes in vitro angiogenesis of human endothelial cell. Cardiocasc. Res. 70:146-157.
9. Kim HJ, Lee YS, Won EH, Chang IH, Kim TH, Park ES, Kim MK, Kim W, Myung SC (2010) Expression of resistin in the prostate and its stimulatory effect on prostate cancer cell proliferation. BJU Int. 108:E77-E83.
10. Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI (2010) Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J. Cell Mol. 14:1419-1431.
11. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425-432.
12. Muoio DM and Lynis DG (2002) Peripheral metabolic actions of leptin. Best Pract. Res. Clin. Endocrinol. Metab. 16:653-666.
13. Onuma M, Bub JD, Rummel TL, Iwamoto Y (2003) Prostate cancer cell-adipocyte interaction: Leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. J. Biol. Chem. 278:42660-42667.
14. Hoda MR and Poken G (2008) Mitogenic and anti-apoptotic actions of adipocyte-derived hormone leptin in prostate cancer cells. BJU Int. 102:383-388.
15. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21:2000-2008.
16. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K and Masaki T (1988) A novel potent vasoconstricator peptide produced by cascular endothelial cells. Nature 332:411-415.
17. Grant K and Taylor I (2003) Endothelin-1: a multifunctional molecule in cancer. Br. J. Cancer 88:163-166.
18. Ali H, Loizidou M, Dashwood M, Savage F, Sheard C and Taylor I (2000) Stimulation of colorectal cancer cell line growth by ET-1 and its inhibitory by ET(A) antagonists. Gut. 47:685-688.
19. Kusuhara M, Yamaguchi K, Nagasaki K, Hayashi C, Hori S, Handa S, Nakamura Y and Abe K (1990) Production of endothelin in human cancer cell lines. Cancer Res. 50:3257-3261.
20. Rubanyi GM and Polokoff MA (1994) Endothelins:molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Phamacol. Rev. 46:325-425.
21. Nelson J, Bagnato A, Battistini B and Nisen P (2003) The endothelin axis: Emerging role in cancer. Nat. Rev. Cancer 3:110-116.
22. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA and Simons JW (1995) Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat. Med. 1:944-949.
23. Papandreou CN, Usmani B, Geng Y, Boqenrieder T, Freeman R, Wilk S, Finstard Cl, Reuter VE, Powell CT, Scheinberg D, Maqill C, Scher HI, Albino AP and Nanus DM (1998) Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat. Med. 4:50-57.
24. Piessevaux J, Lavens D, Peelman F, Tavernier J (2008) The many face of the SOCS box. Cytokine Growth Factor Rev. 19:371-381.
25. Krebs DL and Hilton DJ (2000) SOCS:physiological suppressors of cytokine signaling. J. Cell Sci. 113:2813-2819.
26. Larsen L and Poken C (2002) Suppressor of cytokine signaling: SOCS. APMIS 110:833-844.
27. Jane CT and Rabkin R (2005) Suppressor of cytokine signaling in health and disease. Pediatr. Nephrol. 20:567-575.
28. Motta M, Accornero P, Baratta M (2004) Leptin and prolactin modulate the expression of SOCS-1 in association with interleukin-6 and tumor necrosis factor-α in mammary cells: a role in differentiated secretory epithelium. Regulatory Peptides 121:163-170.
29. Greenhalgh CJ and Hilton DJ (2001) Negative regulation of cytokine signaling. J. Leukoc. Biol. 70:348-356.
30. Steppan CM, Wang J, Whiteman EL, Birnbaum MJ, Lazar MA (2005) Activation of SOCS-3 by resistin. Mol. Cell Biol. 25:1569-1575.
31. Neuwirt H, Puhr M, Santer FR, Susani M, Doppler W, Marcias G, Rauch V, Brugger M, Hobisch A, Kenner L and Culig Z (2009) Suppressor of cytokine signaling (SOCS)-1 is expressed in human prostate cancer and exerts growth-inhibitory function through down-regulation of cyclins and cyclin-dependent kinases. Am. J. Pathol. 5:1921-1930.
32. Bellezza I, Neuwirt H, Nemes C, Cavarretta IT, Puhr M, Steiner H, Minelli A, Bartsch G, Offner F, Hobisch A, Doppler W and Culig Z (2006) Suppressor of cytokine signaling-3 antagonizes cAMP effects on proliferation and apoptosis and is expressed in human prostate cancer. Am. J. Pathol. 169:2199-2208.
33. Puhr M, Santer FR, Neuwirt H, Marcias G, Hobisch A and Culig Z (2010) SOCS-3 antagonises the proliferative and migratory effects of fibroblast growth factor-2 in prostate cancer by inhibition of p44/p42 MAPK signaling. Endocr. Relat. Cancer 17:525-538.
34. Neuwirt H, Puhr M, Cavarretta IT, Mitterberger M, Hobisch A and Culig Z (2007) Suppressor of cytokine signaling-3 is up-regulated by androgen in prostate cancer cell lines and inhibits androgen-mediated proliferative and secretion. Endocr. Relat. Cancer 14:1007-1019.
35. Christopher J. Greenhalgh and Warren S. Alexander (2004) Suppressors of cytokine signaling and regulation of growth hormone action. Growth Horm. IGF Res. 14:200-206.
36. Chang HH, Huang YM, Wu CP, Tang YC, Liu CW, Huamg CH, Ho LT, Wu LY, Kuo YC, Kao YH (2012) Endothelin-1 stimulates suppressor of cytokine signaling-3 gene expression in adipocytes. Gen. Comp. Endocrinol. 178:450-458.
37. Koerner A, Kratzsch J, Kiess W (2005) Adipocytokines: leptin-the classical, resistin-the controversical, adiponectin-the promising, and more to come. Best Pract. Res. Clin. Endocrinol. Metab. 19:525-546.
38. Casey ML, Burd W, MacDonald PC (1992) Massice amounts of immunoreactive endothelin in human seminal fluid. J. Clin. Endoc. Metabol. 74:223-225.
39. Le Brun G, Moldovan F, Aubin P, Cussenot O, Le Duc A and Fiet J (1996) Identification of endothelin receptors in normal and hyperplastic human prostate tissues. Prostate 28:379-384.
40. Nelson JB, Tack KC, Hedican SP, Magnuson SR, Opgenorth TJ, Bova GS, and Simons JW (1996) Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res. 56:663-668.
41. Spinella F, Rosano L, Castro VD, Decandia S, Albini A, Nicotra MR, Natali PG, Bagnato A (2006) Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Mol. Cancer Ther. 5:483-492.
42. Spinella F, Rosano L, Decandia S, Castro VD, Albini A, Elia G, Natali PF, Bagnato A (2006) Antitumor effect of green tea polyphenol epigallocatechin-3-gallate in ovarian carcinoma cells: evidence for the endothelin-1 as a potential target. Exp. Biol. Med. 231:1123-1127.
43. Siddiqui IA, Adhami VM, Afaq F, Ahmad N, Mukhtar H (2004) Modulation of phosphatidylinositol-3-kinase/protein kinase B and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J. Cell Biochem. 91:232-242.
44. Vayalil PK and Katiyar SK (2004) Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinase, c-jun and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate 59:33-42.
45. Steenbrugger GJ, Uffelen CJ, Bolt J, Schroder FH (1991) The human prostatic cancer cell line LNCaP and its derived sublines: an in vitro model for the study of androgen sensitivity. J. Steroid Biochem. Mole. Biol. 40:207-214.
46. Kokontis JM, Takakura K, Hay N, Liao S (1994) Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res. 54:1566-1573.
47. Kokontis JM, Hay N, Liao S (1998) Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol. Endocrinol. 12:941-953.
48. Liao S, Kokontis JM, Chuu CP, Hsu S, Fukuchi J, Dang MT, Hiipakka RA. Four stages of prostate cancer: suppression and eradication by androgen and green tea epigallocatechin gallate. In: Li JJ, Li SA, editors. Hormonal carcinogenesis Ⅳ. New York: Springer, 2005:211-220.
49. Chuu CP, Kokontis JM, Hiipakka RA, Fukuchi J, Lin HP, Lin CY, Huo C, Su LC (2011) Androgen as therapy for androgen receptor positive castration-resistant prostate cancer. J. Biomed. Sci. 18:63.
50. Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH (2009) Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am. J. Physiol. Cell Physiol. 297:C121-C132.
51. Chomczynski P and Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1:581-585.
52. Fleenor D, Arumugam R, Freemark M (2006) Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressor of cytokine signaling, and regulation of insulin-like growth factor Ⅰ. Horm. Res. 55:101-110.
53. Ishibashi KI, Imamura T, Sharma PM, Ugi S, Olefsky JM (2000) The acute and chronic stimulatory effects of endothelin-1 on glucose uptake are mediated by distinct pathways in 3T3-L1 adipocytes. Endocrinology 141:4623-4628.
54. Imamura T, Ishibashi KI, Dalle S, Ugi S, Olefsky JM (1999) Endothelin-1-induced GLUT4 translocation is mediated via Gaq/11 protein and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J. Biol. Chem. 274:33691-33695.
55. Puhr M, Santer FR, Neuwirt H, Susani M, Nemeth JA, Hobisch A, Kenner L, Culig Z (2009) Down-regulation of suppressor of cytokine signling-3 causes prostate cancer cell death through activation of the extrinsic and intrinsic apoptosis pathways. Cancer Res. 69:7375-7384.
56. Lee IT, Lin CC, Lee CY, Hsieh PW, Yang CM (2013) Protective effects of (-)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J. Nutr. Biochem. 24:124-136.
57. Tokuda H, Takai S, Hanai Y, Nishiwaki RM, Hosoi T, Harada A, Ohta T, Kozawa O (2007) (-)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: inhibition of p44/p42 MAP kinase activation. FEBS Lett. 581:1311-1316.
58. Reiter C, Kim JA, Quon MJ (2010) Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: role for AMP-activated protein kinase, akt, and foxo1. Endocrinology 151:103-114.
59. Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp. Hematol. 30:503-512.
60. Deo DD, Rao AP, Bose SS, Ouhtit A, Baliga SB, Rao SA, Trock BJ, Thouta R, Raj M, Rao PN (2008) Differential effects of leptin on the invasive potential of androgen-dependent and –independent prostate carcinoma cells. J. Biomed. Biotechnol. 2008:163902.
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2014-4-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明