以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:112 、訪客IP:18.119.161.216
姓名 傅彥達(Yen-Ta Fu) 查詢紙本館藏 畢業系所 大氣物理研究所 論文名稱 西北太平洋地區熱帶氣旋之移速及路徑分布特性
(Tropical cyclone Tracks and Motions characteristics over the western North Pacific)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 西北太平洋地區的熱帶氣旋,約八成以上生成於季風環流圈中,過去
研究指出季風環流圈的發展和MJO (30-60 天震盪)是有關聯的。另外,MJO
也會影響熱帶氣旋路徑的轉向(Recurve)與直行(Straight),而路徑轉彎的
熱帶氣旋在向北移動的過程,會受到中緯度西風帶的吹送,使得移動速度
明顯加快。因此,我們提出一些疑問:是否移速快的熱帶氣旋都是屬於會
轉向的?我們將1979-2012 年JTWC TC/TD 最佳路徑的資料做統計,發現確
實平均移速前10%的快速TC/TD 路徑幾乎是轉向的,而後10%移速慢的則多
位於南海一帶。而初步的分析結果也產生了2 個問題:(1)為何慢速的TC/TD
不會北上受到西風帶影響而加速,而快速的則有此情形?(2)為何快速的
TC/TD 在剛形成未進入西風帶時,初速就比慢的TC/TD 快上許多?
為了找出原因,使用NCEP-DOE Reanalysis-2 資料將快、慢速TC/TD
的環境場做合成分析,我們發現快速的環境場中,位於台灣東方、日本南
方的區域,皆有一個擾動低壓以利TC/TD 向北移行並進入西風帶;而在慢
速的環境中,低壓擾動則位於南海、菲律賓一帶,而此擾動低壓東北方皆
伴隨著一個擾動高壓,使得慢速的TC/TD 僅能侷限在南方。接著,為了找
出快、慢速TC/TD 初速差異的原因,選取TC/TD 生成前2 天至後2 天共5
天,利用渦度方程式做進一步動力機制的合成分析。從這5 天趨勢項的渦
度收支變化,我們可以看到初速快的TC/TD 渦度收支隨著時間有明顯地增
加,而初速較慢的則逐漸減少。深入探討渦度方程式各項的貢獻,發現平
流項除了TC/TD 周圍正、負渦度分布和趨勢項極為相似外,渦度收支變化
也跟趨勢項很一致,因此說明快、慢TC/TD 的初始速度差異是由渦度的平
流效應所主導的。摘要(英) Previous studies had shown that roughly more than 80% of tropical cyclones/ tropical
depressions(TC/TDs) develop in the monsoon gyres over the western North Pacific and the
activity of the monsoon gyres is associated with MJO (30-60 days oscillation) development.
In addition, MJO also affects the track of TC/TDs, more recurving (straight moving) TC/TDs
occur during MJO low (high). When the recurving TC/TDs go northward, they will be
accelerated by the mid-latitude westerlies. Thus, one may wonder: Whether or not the fast
moving TC/TDs are always recurving? Using the 1979-2012 JTWC TC/TD best track dataset,
we found that the top 10% fast moving TC/TDs are recurving, while the last 10% TC/TDs
which have slow moving speed cluster in the South China Sea. Based upon this preliminary
result, two major issues are raised: (1)Why the slow moving TC/TDs do not go northward and
eventually embed in the mid-latitude westerlies, but the fast moving TC/TDs do? (2)Why the
initial speed is significantly higher for fast moving TC/TDs than those slow ones immediately
after they are formed?
In order to answer these two concerns, the NCEP-DOE Reanalysis-2 data are used for the
composite analysis to examine the environmental differences between the fast and slow
moving types of TC/TDs circulations. It appears that an anomaly low located between south
of Japan and east of Taiwan is conducive to both the further development and northward
migration of the fast moving TC/TDs. In contrast, the anomaly low is confined to the South
China Sea and west of Philippines with an anomaly high toward its northeast side for the
slow moving TC/TDs situation so that the slow moving TC/TDs are limited in this south region.
To better understand the dynamic mechanism causing the initial speed differences between
the fast and slow moving TC/TDs, the vorticity budget analysis is applied to evaluate the
contribution of each term in the equation from two days before to two days after TC/TDs
genesis. It is interesting that the time series of vorticity tendency for the fast moving TC/TDs
show significant increase whereas the slow moving ones decrease gradually during these
five-day initial stages. After careful investigation, it turns out that the advection term, not
only the horizontal distribution but also the time variation, is similar to tendency term.
Apparently, the differences in initial speed between fast and slow moving TC/TDs are
dominated by the advection effect.關鍵字(中) ★ 路徑轉向的熱帶氣旋 關鍵字(英) ★ Recurved TC 論文目次 中文摘要 ……………………………………………………………………………… Ⅰ
英文摘要 …………………………………………………………………… Ⅱ
致謝 …………………………………………………………………………………… Ⅲ
目錄 …………………………………………………………………………………… Ⅳ
附圖目錄 ……………………………………………………………………………… Ⅵ
一、前言 ……………………………………………………………………………… 1
二、資料來源與分析方法 ………………………………………………………… 5
2.1 資料來源 …………………………………………………………………… 5
2.1.1 NCEP-DOE Reanalysis-2 ………………………………………… 5
2.1.2 JTWC Best Track ………………………………………………… 6
2.2 分析方法 …………………………………………………………… 6
2.2.1 渦度方程式 …………………………………………………………… 6
三、熱帶氣旋的分類以及分析時間的選取 …………………………………… 8
3.1 移速的分類及主要的生成時間 ………………………………………… 8
3.2 環境場的季節差異 ………………………………………………………… 9
四、環境場對路徑的影響 ………………………………………………………… 12
4.1 8、9 月份合成分析 ……………………………………………… 12
4.2 10、11 月份合成分析 …………………………………………………… 14
4.3 快速、慢速環境場差異 ………………………………………………… 15
五、初速差異的動力因素 ………………………………………………………… 17
5.1 快、慢初速門檻與合成 ………………………………………………… 17
5.2 渦度收支方程分析 ……………………………………………………… 18
5.3 渦度收支的時間變化 …………………………………………………… 22
六、結論與未來展望 ……………………………………………………………… 24
6.1 結論 ………………………………………………………………………… 24
6.2 未來展望 …………………………………………………………………… 25
參考文獻 ……………………………………………………………………………… 26
附圖 …………………………………………………………………………………… 28參考文獻 Burroughs, L. D., and S. Brand, 1973: Speed of tropical storms and typhoons
afterrecurvature in the western North Pacific Ocean. J. Appl. Meteor., 12,452–458.
Chan, Johnny C. L., William M. Gray, 1982: Tropical Cyclone Movement and Surrounding
Flow Relationships. Mon. Wea. Rev., 110, 1354–1374.
Chen, T. -C., 2005:Variation of the Asian monsoon water vapor budget: interaction with
the global-scale Modes. Then Asian Monsoon, B. Wang, ed., Spring Verlag, 417-458.
______, S. –P. Weng, 1998 : Interannual Variation of the Summer Synoptic-Scale
Disturbance Activity in the Western Tropical Pacific. Mon. Wea. Rev., 126, 1725–
1733.
______, Ming-Cheng Yen, S.-P., Weng, 2000: Interaction between the Summer Monsoons in
East Asia and the South China Sea: Intraseasonal Monsoon Modes. J. Atmos. Sci., 57,
1373–1392.
______, S. -Y. Wang, M. -C. Yen, and W. A. Gallus Jr., 2004: Role of the Monsoon Gyre in the
Interannual Variation of Tropical Cyclone Formation over the western North Pacific.
Wea. Forecasting, 19, 776-785.
______, ______, ______, 2006: Interannual Variation of the Tropical Cyclone Activity over the
Western North Pacific. J. Climate, 19, 5709–5720.
______, ______, ______, and Adam J. Clark, 2008: Are Tropical Cyclones Less Effectively
Formed by Easterly Waves in the Western North Pacific than in the North
Atlantic? Mon. Wea. Rev., 136, 4527–4540.
______, ______, ______, Adam J. Clark, 2009: Impact of the Intraseasonal Variability of the
Western North Pacific Large-Scale Circulation on Tropical Cyclone Tracks. Wea.
Forecasting, 24, 646–666.
Dobos, Paul H., Russell L. Elsberry, 1993: Forecasting Tropical Cyclone Recurvature. Part
I: Evaluation of Existing Methods. Mon. Wea. Rev., 121, 1273–1278.
Evans, Jenni L., Greg J. Holland, Russell L. Elsberry, 1991: Interactions between a
Barotropic Vortex and an Idealized Subtropical Ridge. Part I: Vortex Motion. J. Atmos.
Sci., 48, 301–314.
George, John E., William M. Gray, 1977: Tropical Cyclone Recurvature and
Nonrecurvature as Related to Surrounding Wind-Height Fields. J. Appl. Meteor., 16,
34–42.
Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmos. Sci. Paper,234, Colo. State
Univ., Ft. Collins, CO, 121 pp.
______, 1979: Hurricanes: Their formation, structure, and likely role in the tropical
circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal
Meteorological Society, 127–139.
27
______, 1998: The Formation of Tropical Cyclones, Volume 67, Issue 1-4, pp 37-69
Harr, Patrick A., Russell L. Elsberry, 1991: Tropical Cyclone Track Characteristics as a
Function of Large-Scale Circulation Anomalies. Mon. Wea. Rev., 119, 1448–1468.
Holland, G. J., 1995a: Scale interaction in the western Pacific monsoon. Meteor. Atmos.
Phys., 56, 57–79.
______., Yuqing Wang, 1995b: Baroclinic Dynamics of Simulated Tropical Cyclone
Recurvature. J. Atmos. Sci., 52, 410–426.
Kanamitsu, Masao, Wesley Ebisuzaki, Jack Woollen, Shi-Keng Yang, J. J. Hnilo, M. Fiorino,
G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83,
1631–1643.
Krishnamurti, and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during
MONEX. J. Atmos. Sci., 39, 2088–2095.
_______, T. N., H. S. Bedi, K. S. Yap, D. Oosterhof, and G. Rohaly, 1992: Recurvature
dynamics of a typhoon. Meteor. Atmos. Phys., 50, 105–126.
Lander, 1994: An exploratory analysis of the relationship between tropical storm
formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636–651.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal
wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.
______, ______, 1972: Description of Global-Scale Circulation Cells in the Tropics with a 40–
50 Day Period. J. Atmos. Sci., 29, 1109–1123.
McBride, J. L., 1995: Tropical cyclone formation. Global Perspective on Tropical
Cyclones,WMO/TD-No. 693, World Meteorological Organization, 63–105.
Riehl, Herbert, Robert J. Shafer, 1944: Therecurvatureoftropicalstorm. J. Meteor., 1, 42–
54.
Sadler, J. C., 1967: On the origin of tropical vortices. Pros. Working Panel on Tropical
Dynamic Meteorology, Norfolk, VA, Naval Weather Research Facility, 39-75
Wang, Shih-Yu, Tsing-Chang Chen, S. Elwynn Taylor, 2009: Evaluations of NAM Forecasts
on Midtropospheric Perturbation-Induced Convective Storms over the U.S. Northern
Plains. Wea. Forecasting, 24, 1309–1333.指導教授 嚴明鉦(Ming-Cheng Yen) 審核日期 2014-6-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare