參考文獻 |
REFERENCES
1. A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, S.J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries, Mater. Res. Bull., 2008. 43(8-9):p. 1913-1942.
2. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001. 414(6861):p. 359-367.
3. W. van Schalkwijk, B. Scrosati (Eds.), Advances in Lithium-Ion Batteries, Kluwer Academic/Plenum, Boston, 2004.
4. T. Tanaka, K. Ohta, N. Arai, Year 2000 R&D status of large-scale lithium ion secondary batteries in the national project of Japan, J. Power Sources, 2001. 97–98:p. 2-6.
5. T. Takamura, Trends in advanced batteries and key materials in the new century, Solid State Ionics, 2002. 152–153:p. 19-34.
6. K. Zaghib, P. Charest, A. Guerfi, J. Shim, M. Perrier, K. Striebel, Safe Li-ion polymer batteries for HEV applications, J. Power Sources, 2004. 134(1):p. 124-129.
7. R.A. March, S. Vukson, S. Sarampudi, B.V. Ratnakumar, M.C. Smart, M. Manzo, P.J. Dalton, Li ion batteries for aerospace applications, J. Power Sources, 2001. 97–98:p. 25-27.
8. P.G. Bruce, Energy storage beyond the horizon: Rechargeable lithium batteries, Solid State Ionics, 2008. 179(21-26):p. 752-760.
9. S. Tobishima, Secondary batteries - lithium rechargeable systems – lithium- ion thermal runaway, Encyclopedia of Electrochemical Power Sources, 2009, Elsevier: Amsterdam. p. 409-417.
10. McCurry, J. Sony recalls nearly 500,000 PCs worldwide. 2008, http://www.guardian.co.uk/business/2008/sep/05/japan.sony.
11. J.W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Source, 2010. 195(4):p. 939-954.
12. H. Xia, L. Lu, Y.S. Meng, G. Ceder, Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition, J. Electrochem. Soc., 2007. 154(4):p. A337-A342.
13. V. Ganesh Kumar, J.S. Gnanaraj, S.B. David, D.M. Pickup, E.R.H. van-Eck, A. Gedanken, D. Aurbach, An aqueous reduction method to synthesize spinel-LiMn2O4 nanoparticles as a cathode material for rechargeable lithium-ion batteries, Chem. Mater., 2003. 15(22):p. 4211-4216.
14. Y. Zhang, C.Y. Wang, X. Tang, Cycling degradation of an automotive LiFePO4 lithium-ion battery, J. Power Sources, 2011. 196(3):p. 1513-1520.
15. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J.Electrochem. Soc., 1997. 144(4):p. 1188–1194.
16. S. Yang, P.Y. Zavalij, M.S. Whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochem. Commun., 2001. 3(9):p. 505-508.
17. G.X. Wang, S.L. Bewlay, K. Konstantinov, H.K. Liu, S.X. Dou, J.H. Ahn, Physical and electrochemical properties of doped lithium iron phosphate electrodes, Electrochem. Acta, 2004. 50:p. 443-447.
18. Z. Gong, Y. Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries, Energy Environ. Sci., 2011. 4(9):p. 3223–3242.
19. V. Srinivasan, J. Newman, Existence of path-dependence in the LiFePO4 electrode, Electrochem. Solid-State Lett., 2006. 9(3):p. A110-A114.
20. A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes, J. Electrochem. Soc., 2001. 148(3):p. A224-A229.
21. C. Wang, J. Hong, Ionic/electronic conducting characteristics of LiFePO4 cathode materials: The determining factors for high rate performance, Electrochem. Solid-State Lett., 2007. 10(3):p. A65-A69.
22. G. Arnold, J. Garche, R. Hemmer, S. Strebele, C. Vogler, M.W. Mehrens, Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique, J. Power Sources, 2003. 119:p. 247-251.
23. P.P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, M. Pasquali, A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance, J. Electrochem. Soc., 2002. 149(7):p. A886-A890.
24. S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater., 2002. 1:p. 123-128.
25. H. Gabrisch, J.D. Wilcox, M.M. Doeff, Carbon surface layers on a high-rate LiFePO4, Electrochem. Solid-State Lett., 2006. 9(7):p. A360-A363
26. H.T. Chung, S.K. Jang, H.W. Ryu, K.B. Shim, Effects of nano-carbon webs on the electrochemical properties in LiFePO4/C composite, Solid State Commun., 2004. 131:p. 549-551.
27. P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates, Nat. Mater., 2004. 3:p. 147-152.
28. H. Xie, Z. Zhou, Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery, Electrochim. Acta, 2006. 51:p. 2063-2067.
29. J.F. Ni, H.H. Zhou, J.T. Chen, X.X. Zhang, LiFePO4 doped with ions prepared by co-precipitation method, Mater. Lett., 2005. 59:p. 2361-2365.
30. S.Y. Chung, Y.M. Chiang, Microscale measurements of the electrical conductivity of doped LiFePO4, Electrochem. Solid-State Lett., 2003. 6:p. A278-A281.
31. A. Kraytsberg, Y.E. Eli, A review of 5 volt cathode materials for advanced lithium-ion batteries, Adv. Energy Mater., 2012, 2:p. 922–939.
32. R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem., 2011, 21:p. 9938-9954.
33. N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods, J. Magn. Magn. Mater., 2007. 309(1):p. 100-105.
34. R. Santhanam, B. Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 materials, Journal of Power Sources, 2010. 195(17):p. 5442-5451.
35. K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, Topotactic two-phase reactions of LiNi0.5Mn1.5O4 (P4332) in nonaqueous lithium cells, J. Electrochem. Soc., 2004. 151(2):p. A296-A303.
36. H. Xia, Y.S. Meng, L. Lu, G. Ceder, Electrochemical properties of nonstoichiometric LiNi0.5Mn1.5O4?δ thin-film electrodes prepared by pulsed laser deposition, J. Electrochem. Soc., 2007. 154(8):p. A737-A743.
37. Y.K. Sun, K.J. Hong, J. Prakash, K. Amine, Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures, Electrochem. Commun., 2002. 4:p. 344-348.
38. S.T. Myung, Y. Hitoshi, Y.K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries, J. Mater. Chem., 2011. 21:p. 9891-9911.
39. H. Ota, K. Shima, M. Ue, J.I. Yamaki, Effect of vinylene carbonate as additive to electrolyte for lithium metal anode, Electrochim.Acta., 2004. 49(4):p. 565-572.
40. W. Xu, F. Ding, J. Zhang, X. Chen, M.H. Engelhard, M.Sushku, E. Nasybulin, J. Xiao, G.L. Graff, J.G. Zhanga, in: Proceedings of the Honolulu Prime 2012, Enhanced morphology and cycling efficiency of Li metal anode by electrolyte additives for rechargeable Li batteries, Abstract, No. 1247.
41. J. Jin, H.H. Li, J.P. Wei, X.K. Bian, Z. Zhou, J. Yan, Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte, Electrochem.Commun., 2009. 11(7):p. 2500-2503.
42. D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochim. Acta, 2004. 50(2-3):p. 247-254.
43. K. Xu, Secondary batteries - Lithium rechargeable systems | electrolytes: overview, in Encyclopedia of Electrochemical Power Sources, 2009, Elsevier: Amsterdam. p. 51-70.
44. K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004. 104:p. 4303-4417.
45. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 2010. 22:p. 587–603.
46. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 2011. 4:p. 3243–3262.
47. S.S. Zhang, K. Xu, T. R. Jow, Study of LiBF4 as an electrolyte salt for a Li-ion battery, J. Electrochem. Soc., 2002. 149:p. A586-A590.
48. S.S. Zhang, K. Xu, T.R. Jow, Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte, J. Solid StateElectrochem., 2003. 7(3):p. 147-151.
49. R. Marom, O. Haik, D. Aurbach, I.C. Halalay, Revisiting LiClO4 as an electrolyte for rechargeable lithium-ion batteries, J. Electrochem. Soc., 2010. 157(8):p. A972-A983.
50. L.A. Dominey, CH4. In Lithium batteries. New materials, Developments and Perspectives, G. Pistioa, Ed., Elsevier, Amsterdam.
51. T. Kawamura, S. Okada, J.I. Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells, J. Power Sources, 2006. 156(2):p. 547-554.
52. D. Aurbach, B. Markovsky, A. Shechter, V.E. Eli, Comparative study of synthetic graphite and li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures, J. Electrochem. Soc., 1996. 143(12):p. 3809-3820.
53. L.N. Wang, Z.G. Zhang, K.L. Zhang, A simple, cheap soft synthesis routine for LiFePO4 using iron(III) raw material, J. Power Sources, 2007. 167(1):p. 200-205.
54. M. Kunduraci, G.G. Amatucci, Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power Lithium-ion batteries, J. Electrochem. Soc., 2006. 153:p. A1345-A1352.
55. H.C. Wu, C.Y. Su, D.T. Shieh, M.H. Yang, N.L. Wu, Enhanced high-temperature cycle life of LiFePO4-based Li-ion batteries by vinylene carbonate as electrolyte additive, Electrochem. Solid-State Lett., 2006. 9:p. A537–A541.
56. J. Mun, T. Yim, K. Park, J.H. Ryu, Y.G. Kim, S.M. Oh, Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature, J. Electrochem. Soc., 2011. 158:p. A453–A457.
57. H. Weingrtner, Understanding ionic liquids at the molecular level: Facts, problems, and controversies, Angew. Chem. Int. Ed., 2008. 47:p. 654 – 670.
58. M. Armand, F. Endres, D.R. Macfarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature Mater. 2009. 8:p. 621-629.
59. J. Dupont, R.F.D. Souza, P.A.Z. Suarez, Ionic liquid (molten Salt) phase Organometallic Catalysis, Chem. Rev. 2002. 102:p. 3667-3692.
60. C. Arbizzani, G. Gabrielli, M. Mastragostino, Thermal stability and flammability of electrolytes for lithium-ion batteries, J. Power Sources 2011. 196:p. 4801–4805.
61. B. Garcia, S. Lavalle’e, G. Perron, C. Michot, M. Armand, Room temperature molten salts as lithium battery electrolyte, Electrochim. Acta, 2004. 49:p. 4583–4588.
62. M. Gali’nski, A. Lewandowski, I. Stepniak, Ionic liquids as electrolytes, Electrochim. Acta, 2006. 51:p. 5567–5580.
63. D.M. Fox, W.H. Awad, J.W. Gilman, P.H. Maupin, H.C.D. Long, P.C. Trulove, Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts, Green Chem., 2003. 5:p. 724–727.
64. A. Lewandowski, A.S. Mocek, Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies, J. Power Sources, 2009. 194:p. 601–609.
65. J.S. Lee, J.Y. Bae, H. Lee, N.D. Quan, H.S. Kim, H. Kim, Ionic liquids as electrolytes for Li ion Batteries, J. Ind. Eng. Chem. 2004. 10:p. 1086–1089.
66. V. Borgel, E. Markevich, D. Aurbach, G. Semrau, M. Schmidt, On the application of ionic liquids for rechargeable Li batteries: High voltage systems, J. Power Sources, 2009. 189:p. 331-336.
67. J.S. Wilkes, M.A. Zaworotko, Air and Water Stable 1-Ethyl-3-methylimidazolium Based Ionic Liquids, J. Chem. Soc., Chem. Commun.,1992. 2:p. 965-967.
68. T.Y. Wu, L. Hao, P.R. Chen, J.W. Liao, Ionic conductivity and transporting properties in LiTFSI-doped bis(trifluoromethanesulfonyl)imide-based ionic liquid electrolyte, Int. J. Electrochem. Sci., 2013. 8:p. 2606-2624.
69. G.B. Appetecchi, M. Montanino, A. Balducci, S.F. Lux, M. Winter, S. Passerini, Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes, Electrochemical characterization of the electrolytes, J. Power Sources, 2009. 192:p. 599-605.
70. G.B. Appetecchi, M. Montanino, D. Zane, M. Carewska, F. Alessandrini, S. Passerini, Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidiniumbis(trifluoromethanesulfonyl)imide ionic liquids, Electrochim. Acta, 2009. 54:p. 1325-1332.
71. Y. Lauw, M.D. Horne, T. Rodopoulos, V. Lockett, B. Akgun, W.A. Hamilton, A.R.J. Nelson, Structure of [C4mpyr][NTf2] room-temperature ionic liquid at charged gold interfaces, Langmuir, 2012. 28(19):p. 7374-7381.
72. N. Byrne, P.C. Howlett, D.R. MacFarlane, M.E. Smith, A. Howes, A.F. Hollenkamp, T. Bastow, P. Hale, M. Forsyth, Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes, J. Power Sources, 2008. 184:p. 288-296.
73. N. Byrne, P.C. Howlett, D.R. MacFarlane, M. Forsyth, The zwitterion effect in ionic liquids: towards practical rechargeable lithium-metal batteries, Adv. Mater., 2005. 17:p. 2497–2501.
74. C. Tiyapiboonchaiya, J.M. Pringle, J. Sun, N. Byrne, P.C. Howlett, D.R. MacFarlane, M. Forsyth, The zwitterion effect in high-conductivity polyelectrolyte materials, Nat. Mater., 2004. 3:p. 29–32.
75. J.H. Shin, E.J. Cairns, N-Methyl-(n-butyl) pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI poly(ethyleneglycol) dimethyl ether mixture as a Li/S cell electrolyte, J. Power Sources, 2008. 177:p. 537-545.
76. J.H. Shin, P. Basak, J.B. Kerr, E.J. Cairns, Rechargeable Li/LiFePO4 cells using N-methyl-N-butyl pyrrolidiniumbis(trifluoromethanesulfonyl)imide–LiTFSI electrolyte incorporating polymer additives, Electrochim. Acta, 2008. 54:p. 410-414.
77. R.S. Kuhnel, N. Bockenfeld, S. Passerini, M. Winter, A. Balducci, Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries, Electrochim. Acta, 2011. 56:p. 4092-4099.
78. V. Chakrapani, F. Rusli, M.A. Filler, P.A. Kohl, Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery, J. Phys. Chem. C, 2011. 115:p. 22048-22053.
79. L.E. Ouatani, R. Dedryvere, C. Siret, P. Biensan, D. Gonbeaua, Effect of vinylene carbonate additive in Li-ion batteries: comparison of LiCoO2/C, LiFePO4/C, and LiCoO2/Li4Ti5O12 systems, J. Electrochem. Soc., 2009. 156:p. A468-A477.
80. H. Sano, H. Sakaebe, H. Matsumotoa, Effect of organic additives on electrochemical properties of Li anode in room temperature ionic liquid, J. Electrochem. Soc., 2011. 158:p. A316-A321.
81. M. Li, B. Yang, Z. Zhang, L. Wang, Y. Zhang, Polymer gel electrolytes containing sulfur-based ionic liquids in lithium battery applications at room temperature, J. Appl. Electrochem 2013 43: p.515-521.
82. A. Chagnes, M. Diaw, B. Carre, P. Willmann, D. Lemordant, Imidazolium-organic solvent mixtures as electrolytes for lithium batteries, J. Power Sources, 2005. 145:p. 82-88.
83. M. Diaw, A. Chagnes, B. Carr’e, P. Willmann, D. Lemordant, Mixed ionic liquid as electrolyte for lithium batteries, J. Power Sources, 2005. 146:p. 682-684.
84. H.F. Xiang, B. Yin, H. Wang, H.W. Lin, X.W. Ge, S. Xie, C.H. Chen, Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries, Electrochim. Acta, 2010. 55:p. 5204-5209.
85. H. Wang, S. Liu, N. Wang, Y. Liu, Vinylene carbonate modified 1-butyl-3-methyle-imidazolium tetrafluoroborate ionic liquid mixture as electrolyte, Int. J. Electrochem. Sci., 2012. 7:p. 7579-7586.
86. E. Peled, The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems - The solid electrolyte interphase model, Electrochem. Soc., 1979. 126(1):p. 2047-2051.
87. S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, J. Power Sources, 2006. 162(1):p. 1379-1394.
88. B.E. Conway, Electrochemical supercapacitors: Scientific fundamentals and technological applications, Klewer Academic / Plenum Publishers, Boston (1999).
89. F. Castiglione, E. Ragg, A. Mele, G.B. Appetecchi, M. Montanino, S. Passerini, Molecular environment and enhanced diffusivity of Li+ ions in lithium-salt-doped ionic liquid electrolytes, J. Phys. Chem. Lett., 2011. 2(3):p. 153-157.
90. G.T.K. Fey, K.P. Huang, H.M. Kao, A polyethylene glycol-assisted carbothermal reduction method to synthesize LiFePO4 using industrial raw materials, J. Power Sources, 2011. 196(5):p. 2810-2818.
91. H.S. Choe, B.G. Carroll, D.M. Pasquariello, K.M. Abraham, Characterization of Some Polyacrylonitrile-Based Electrolytes, Chem. Mater., 1997. 9:p. 369-379.
92. D. Choi, P.N. Kumta, Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries, J. Power Sources, 2007. 163(2):p. 1064-1069.
93. G.T.K. Fey, H.J. Tu, K.P. Huang, Y.C. Lin, H.M. Kao, S.H. Chan, Particle size effects of carbon sources on electrochemical properties of LiFePO4/C composites, J. Solid State Electrochem., 2012. 16(4):p. 1857-1862.
94. G.T.K. Fey, Y.G. Chena, H.M. Kao, Electrochemical properties of LiFePO4 prepared via ball-milling, J. Power Sources, 2009. 189(1):p. 169-178.
95. C.Z. Lu, G.T.K. Fey, H.M. Kao, Study of LiFePO4 cathode materials coated with high surface area carbon, J. Power Sources, 2009. 189(1):p. 155-162.
96. H.C. Shin, W.I Cho, H. Jang, Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black, Electrochim. Acta, 2006. 52(4):p. 1472-1476.
97. X. Kang, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004. 104(10):p. 4303-4417.
98. J. Huang, M. Forsyth, D.R. MacFarlane, Solid state lithium ion conduction in pyrrolidinium imide–lithium imide salt mixtures, Solid State Ionics, 2000. 136-137:p. 447-452.
99. M. Forsyth, J. Huang, D.R. MacFarlane, Lithium doped N-methyl-N-ethyl pyrrolidinium bis(trifluoromethanesulfonyl)amide fast-ion conducting plastic crystals, J. Mater. Chem., 2000. 10(10):p. 2259-2265.
100. T. Fromling, M. Kunze, M. Schonhoff, J. Sundermeyer, B. Roling, Enhanced lithium transference numbers in ionic liquid electrolytes, J. Phys. Chem. B, 2008. 112(41):p. 12985-12990.
101. S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, N. Terada, Imidazolium-based room-temperature ionic liquid for lithium secondary batteries : Effects of lithium salt concentration, J. Electrochem. Soc., 2007. 154(3):p. A173-A177.
102. M. Koltypin, D. Aurbach, L.Nazar, B. Ellis, On the stability of LiFePO4 olivine cathodes under various conditions (electrolyte solutions, temperatures), Electrochem. Solid-State Lett., 2007. 10(2):p. A40-A44.
103. K. Hayamizu, Y. Aihara, S. Arai, C.G. Martinez, Pulse-gradient spin-echo 1H, 7Li, and 19F NMR diffusion and ionic conductivity measurements of organic electrolytes containing LiN(SO2CF3)2, J. Phys. Chem. B, 1999. 103:p. 519–524.
104. K. Tasaki, K. Kanda, T. Kobayashi, S. Nakamura, M. Ue, Theoretical studies on the reductive decompositions of solvents and additives for lithium- ion batteries near lithium anodes, J. Electrochem. Soc., 2006. 153:p. A2192–A2197.
105. Y.S. Lee, Y.K. Sun, S. Ota, T. Miyashita, M. Yoshio, Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5 V cathode material by composite carbonate process, Electrochem. Commun., 2002. 4:p. 989-994.
106. H. Zhou, F. Lou, P.E. Vullum, M.A. Einarsrud, D. Chen, F.V. Bruer, 3D aligned-carbon nanotubes@Li2FeSiO4 arrays as high rate capability cathodes for Li-ion batteries, Nanotechnology, 2013. 24:p. 435703-435714.
107. L. Xi, C. Cao, R. Ma, Y. Wang, S. Yang, J. Deng, M. Gao, F. Lian Z. Lu, C.Y. Chung, Layered Li2MnO3.3LiNi0.5-xMn0.5-xCo2xO2 microspheres with Mn-rich cores as high performance cathode materials for li ion batteries, Phys. Chem. Chem. Phys., 2013, 15:p. 16579–16585.
108. X.Y. Feng, C. Shen, X. Fang, C.H. Chen, Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance, J. Alloys Comp., 2011. 509:p. 3623–3626.
109. G.Q. Liu, L. Wen, Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries, J. Solid State Electrochem., 2010. 14:p. 2191-2202.
110. M. Kunduraci, J.F.A. Sharab, G.G. Amatucci, High-power nanostructured LiMn2-xNixO4 high-voltage Lithium-ion battery electrode materials: Electrochemical impact of electronic conductivity and morphology, Chem. Mater., 2006. 18:p. 3585-3592.
111. J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332, Chem. Mater., 2004. 16:p. 906-914.
112. M. Moshkovich, M. Cojocaru, H.E. Gottlieb, D. Aurbach, The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS, J. Electroanal. Chem., 2001, 497:p. 84–96.
|