博碩士論文 93224013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.222.22.244
姓名 呂冠儒(Kuan-Ju Lu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 FLOWERING LOCUS T (FT)訊息核醣核酸可在韌皮部移動並且有類開花素之特性
(The mRNA of FLOWERING LOCUS T (FT) is a phloem mobile RNA and may act as a florigen-like molecule)
相關論文
★ 水稻CAF1基因之功能分析-水稻CAF1基因的選殖、定性及表現★ 水稻OsDEADl-1基因的功能性探討
★ 利用水稻細胞之懸浮培養建立蛋白質高效率分泌系統★ 水稻CCR4基因之功能分析- 水稻CCR4基因的選殖、定性及表現
★ 阿拉伯芥 AtMYBS 基因功能性探討★ 水稻OsMYBS2基因的功能性分析
★ 水稻CCR4基因的功能分析- 繁衍大量表現和靜默表現的基因轉殖水稻★ 水稻OsVALs基因的功能性分析- 水稻OsVALs基因的選殖、定性及表現
★ 分析水稻T-DNA插入突變株: M0022150, M0023563, M0023580, M0037352及M0032079★ 以水稻懸浮培養細胞蛋白質生產系統生產mGMCSF
★ 建立表現耐熱澱粉普魯南糖酶基因之轉植甘藷★ 阿拉伯芥AtMYBSs基因參與在糖訊息及離層酸訊息傳遞之研究
★ I. II.★ 探討αAmy3、OsCIN1與Os33KD信號肽在水稻懸浮培養細胞中的功能及特性
★ 水稻CAF1基因在水稻懸浮培養細胞之研究★ 探討阿拉伯芥兩個MYB-related轉錄因子在糖訊息傳遞中所扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在高等植物的生長發育過程中,決定由營養時期轉變為繁殖時期是一個非常重要的步驟。為了能夠讓後代在最適合的環境下生長,植物必須根據周圍環境的變遷來調節它們的由營養時期轉變為繁殖時期的過程。由經典的嫁接實驗發現,植物在接收到日照長短的改變之後,開花激素(刺激開花的物質),會在葉部生成,並且經由韌皮部長距離移動到植物頂端而誘導開花。先前的研究已經發現FLOWERING LOCUS T (FT)的蛋白質可在阿拉伯芥以及稻米中扮演類開花激素的角色。然而,當FT 蛋白質與其結合物形成複合體而侷限在維管束內時,植物開花的時間並沒有因此而延遲,顯示可能有其他扮演類開花激素的物質誘導開花的起始,推測FT 的訊息核醣核酸可能扮演誘導功能。因此,在本研究當中,利用反轉錄聚合酶鏈反應,我們首先確定了FT 的訊息核醣核酸的確存在於Brassica oleracea(一種和阿拉伯芥相當接近的物種)的韌皮部汁液中。藉著阿拉伯芥的嫁接實驗更進一步的確認了FT 訊息核醣核酸的長距離移動。本研究結果顯示,除了已被報導不具長距離移動能力的FT-EGFP 片段之外,帶著標定片段的FT 訊息核醣核酸,確實可以移動穿越嫁接的單元而被偵測到。除此之外,FT 訊息核醣核酸長距離移動和促進開花之間有正相關的關係。綜合以上,我們提出FT 的訊息核醣核酸和蛋白質可並行扮演開花激素而調節開花的時間。
摘要(英) In higher plants, the determination of the transition from vegetative to reproductive stage is one of the most important steps during their developmental courses. In order to produce offspring at optimal environmental conditions, plants must response to the variations of ambient condition and adjust their reproductive transition. From classic grafting experiments, it has been established that after plants receiving day-length difference, florigen, the floral stimuli, are synthesized in the leaves and then transported long-distance through phloem to trigger flowering at apices. Previous studies have shown that the protein of FLOWERING LOCUS T (FT) may act as a florigen-like molecule in Arabidopsis and rice. However, while FT protein movement is restricted by expressing a strong FT-binding protein in vascular tissues, the flowering time is not delayed, suggesting that other florigen-like molecule, probably FT mRNA, may act redundantly to trigger floral initiation. To test this
possibility, we first determined the existence of FT mRNA in the phloem sap. By using RT-PCR analysis, FT mRNA is detected in the phloem sap collected from Brassica oleracea, a species closely related to Arabidopsis. To further test the long-distance movement of FT mRNA, the Arabidopsis grafting experiments were conducted. Our results show that the chimeric FT mRNA except FT-EGFP can move long-distance trough grafting unit. In addition, the
detection of FT mRNA in the scion apices is well correlated with the floral promotion in the scions. Taken together, we propose that both FT mRNA and protein may act redundantly as florigens to regulate flowering time.
關鍵字(中) ★ 訊息核醣核酸
★ 韌皮部
★ 開花素
關鍵字(英) ★ FLOWERING LOCUS T
★ phloem
★ florigen
論文目次 Introduction ................................................................................................................1
1.1 The florigen is a general floral stimulus among diverse plant species.....................................................................................................1
1.2 mRNA may act as a long-distance information molecule ..........2
1.3 Florigen is possibly generated in long-day pathway,
down-stream of CONSTANS ..............................................................3
1.4 The investigation of FT as florigen ..................................................4
1.5 Specific Aim............................................................................................6
Materials and Methods ............................................................................................7
3.1 Plant materials and growth conditions ...........................................7
3.2 Construction and transgenic plants generation...........................7
3.3 Broccoli phloem sap collection ........................................................8
3.4 Arabidopsis inflorescence grafting assay .....................................8
3.5 Seedling grafting assay.......................................................................9
3.6 RNA extraction.......................................................................................9
3.7 Reverse transcription polymerase chain reaction (RT-PCR) ..10
3.8 Confocal microscopy.........................................................................11
Results .......................................................................................................................12
2.1 FT mRNA can be detected in the phloem sap of broccoli .......12
2.2 The movement of chimaric FT mRNA can be detected by
inflorescence grafting assay............................................................12
2.3 The 3’UTR may play a role in stabilizing FT mRNA...................14
2.4 The distribution of EGFP-FT fusion protein is ubiquitous in the
root tissues...........................................................................................15
2.5 Wild-type FT mRNA is non-detectable in inflorescence grafting
assay......................................................................................................16
Discussion ................................................................................................................18
4.1 Long-distance movement of FT mRNA.........................................18
4.2 The diversity of long-distance transportation in plants ...........19
4.3 The distribution of SUC2: EGFP-FT protein suggests the
possibility of protein movement.....................................................20
4.4 Auto-regulation may play a role in flowering regulation..........21
Table 1. Flowering time of all transgenic plants.............................................26
Figures .......................................................................................................................23
References................................................................................................................36
Appendix I. Primers used in this study.............................................................41
參考文獻 Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
An, H., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., and Coupland, G. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 3615-3626.
Ayre, B.G., and Turgeon, R. (2004). Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol 135, 2271-2278.
Banerjee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A., and Hannapel, D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443-3457.
Bernier, G., and Perilleux, C. (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3, 3-16.
Bernier, G., Havelange, A., Houssa, C., Petitjean, A., and Lejeune, P. (1993). Physiological Signals That Induce Flowering. Plant Cell 5, 1147-1155.
Besnard-Wibaut, C. (1981). Effectiveness of giberellins and
6-benzyladenine on flowering of Arabidopsis thaliana. Physiologia Plantarum 53, 205-212.
Blazquez, M. (2000). Flower development pathways. J Cell Sci 113 ( Pt 20), 3547-3548.
Bohlenius, H., Eriksson, S., Parcy, F., and Nilsson, O. (2007). Retraction. Science 316, 367.
Chailakhyan, M.K. (1936). New facts in support of the hormonal theory of plant development. C.R. Acad. Sci. URRS 13, 79-83.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.
Plant J 16, 735-743. Corbesier, L., and Coupland, G. (2005). Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to
characterization of the floral stimulus. Plant, Cell & Environment 28, 54-66.
Corbesier, L., Lejeune, P., and Bernier, G. (1998). The role of 37 carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206, 131-137.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science, 1141752.
Eimert, K., Wang, S.M., Lue, W.I., and Chen, J. (1995). Monogenic Recessive Mutations Causing Both Late Floral Initiation and Excess Starch Accumulation in Arabidopsis. Plant Cell 7, 1703-1712.
Garner, W.W., and Allard, H.A. (1923). Further studies on photoperiodism, the response of plants to relative length of day and night. J. Agric. Res. 23, 871-920.
Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A., and Kehr, J. (2006). Towards the proteome of Brassica napus phloem sap. Proteomics 6, 896-909.
Gocal, G.F., Sheldon, C.C., Gubler, F., Moritz, T., Bagnall, D.J., MacMillan, C.P., Li, S.F., Parish, R.W., Dennis, E.S., Weigel, D., and King, R.W. (2001). GAMYB-like genes, flowering, and gibberellin signaling in
Arabidopsis. Plant Physiol 127, 1682-1693.
Haywood, V., Yu, T.S., Huang, N.C., and Lucas, W.J. (2005). Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42, 49-68.
He, Y.W., and Loh, C.S. (2002). Induction of early bolting in Arabidopsis thaliana by triacontanol, cerium and lanthanum is correlated with increased endogenous concentration of isopentenyl adenosine (iPAdos). J Exp Bot 53, 505-512.
Huang, T., Bohlenius, H., Eriksson, S., Parcy, F., and Nilsson, O. (2005). The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309, 1694-1696.
Ikeda, Y., Kobayashi, Y., Yamaguchi, A., Abe, M., and Araki, T. (2007). Molecular basis of late-flowering phenotype caused by dominant epi-alleles of the FWA locus in Arabidopsis. Plant Cell Physiol 48, 205-220.
Imlau, A., Truernit, E., and Sauer, N. (1999). Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11, 38 309-322.
Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286, 1962-1965.
Kim, M., Canio, W., Kessler, S., and Sinha, N. (2001). Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293, 287-289.
King, R.W., and Zeevaart, J.A. (1973). Floral Stimulus Movement in Perilla and Flower Inhibition Caused by Noninduced Leaves. Plant Physiol 51, 727-738.
King, R.W., Moritz, T., Evans, L.T., Martin, J., Andersen, C.H., Blundell, C., Kardailsky, I., and Chandler, P.M. (2006). Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. Plant Physiol 141, 498-507.
Knott, J.E. (1934). Effect of localized photoperiod on spinach. Proc. Am. Soc. Hortic. Sci. 31, 152-154.
Kollmann, R., Dorr, I., and Kleinig, H. (1970). Protein Filaments - Structural Components of Phloem Exudate .1. Observations with Cucurbita and Nicotiana. Planta 95, 86-&.
Komeda, Y. (2004). GENETIC REGULATION OF TIME TO FLOWER IN
ARABIDOPSIS THALIANA. Annual Review of Plant Biology 55,
521-535.
Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229, 57-66.
Koornneef, M., Alonso-Blanco, C., Peeters, A.J.M., and Soppe, W. (1998). GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annual Review of Plant Physiology and Plant Molecular Biology 49, 345-370.
Kühn, C., Franceschi, V.R., Schulz, A., Lemoine, R., and Frommer, W.B. (1997). Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275, 1298-1300.
Lang, A., Chailakhyan, M.K., and Frolova, I.A. (1977). Promotion and Inhibition of Flower Formation in a Dayneutral Plant in Grafts with a Short-Day Plant and a Long-Day Plant. PNAS 74, 2412-2416.
Lifschitz, E., Eviatar, T., Rozman, A., Shalit, A., Goldshmidt, A., Amsellem, Z., Alvarez, J.P., and Eshed, Y. (2006). The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A 103, 6398-6403.
Michniewicz, M., and Kamienska, A. (1965). Flower formation induced hy kinetin and vitamin E treatment in long-day plant (Arabidopsis thaliana) in short days. Naturwissenschaften 52, 623.
Mouradov, A., Cremer, F., and Coupland, G. (2002). Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 Suppl, S111-130.
Muller, M., Heuck, A., and Niessing, D. (2007). Directional mRNA transport in eukaryotes: lessons from yeast. Cell Mol Life Sci 64, 171-180.
Putterill, J., Laurie, R., and Macknight, R. (2004). It's time to flower: the genetic control of flowering time. Bioessays 26, 363-373.
Rodriguez-Falcon, M., Bou, J., and Prat, S. (2006). SEASONAL CONTROL OF TUBERIZATION IN POTATO: Conserved Elements with the Flowering Response. Annual Review of Plant Biology 57, 151-180.
Ruiz-Medrano, R., Xoconostle-Cazares, B., and Lucas, W.J. (1999). Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405-4419.
Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613-1616.
St Johnston, D. (1995). The intracellular localization of messenger RNAs. Cell 81, 161-170.
Stadler, R., Wright, K.M., Lauterbach, C., Amon, G., Gahrtz, M., Feuerstein, A., Oparka, K.J., and Sauer, N. (2005). Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41, 319-331.
Takada, S., and Goto, K. (2003). Terminal flower2, an Arabidopsis homolog of heterochromatin protein1, counteracts the activation of flowering locus T by constans in the vascular tissues of leaves to regulate flowering time. Plant Cell 15, 2856-2865.
Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a Protein Is a Mobile Flowering Signal in Rice. Science,1141753.
Truernit, E., and Sauer, N. (1995). The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of beta-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta 196, 564-570.
Turnbull, C.G., Booker, J.P., and Leyser, H.M. (2002). Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32, 255-262.
Wilson, R.N., Heckman, J.W., and Somerville, C.R. (1992). Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol 100, 403-408.
Xu, Y.L., Gage, D.A., and Zeevaart, J.A. (1997). Gibberellins and stem growth in Arabidopsis thaliana. Effects of photoperiod on expression of the GA4 and GA5 loci. Plant Physiol 114, 1471-1476.
Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., Yoo, S.Y., Lee, J.S., and Ahn, J.H. (2005). CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139, 770-778.
Zeevaart, J.A. (2006). Florigen coming of age after 70 years. Plant Cell 18, 1783-1789.
Zeevaart, J.A.D. (1976). Physiology of Flower Formation. Annual Review of Plant Physiology 27, 321-348.
Zeevaart, J.A.D. (1983). Gibberellins and flowering. The Biochemistry and physiology of Gibberellins (ed. A. Crozier), 333-374.
Ziegler, H. (1975). Encyclopedia of Plant Physiology Vol. 1 (eds Zimmermann, M.H. & Milburn, J. A.), 59-100.
指導教授 陸重安、余天心
(Chung-An Lu、Tien-Shin Yu)
審核日期 2007-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明