博碩士論文 101223017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:18.191.123.220
姓名 陳姿陵(Tzu-ling Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以鹽析輔助式液液萃取法結合線上衍生氣相層析質譜儀檢測水樣中之消毒副產物鹵乙醯胺
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 以MIL-101(Cr)作為吸附劑結合MALDI-TOF-MS快速檢測環境水樣中二苯甲酮類化合物的殘留
★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究
★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究
★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究
★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討
★ 快速分析水環境中醫療藥品殘留物之研究與探討★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究
★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 消毒副產物是由消毒劑與水中之有機物質反應而得,雖然消毒劑可將水中之致病菌有效的消滅,但消毒副產物卻會危害人體的健康,而鹵乙醯胺(Haloacetamides,簡稱HAcAms)就是其中一種。在USEPA 的研究報告中已指出HAcAms 的誘發突變性及致癌的風險皆遠高於三鹵甲烷、鹵乙酸和亞硝胺(Nitrosamines)等消毒副產物,但針對HAcAms 尚未制訂明確的限制含量。
本實驗利用鹽析輔助式液液萃取法(Salting-out assisted liquid-liquid
extraction,簡稱SALLE)做為樣品前處理方法,並搭配線上(on-line)衍生氣相層析質譜儀(GC-MS)來檢測五種鹵乙醯胺(CAcAm、DCAcAm、BAcAm、
BCAcAm、DBAcAm)在水樣中的濃度。線上矽烷化衍生條件之最佳化為:取1 μL 的MTBSTFA+1%TBDMSCl 矽烷化衍生試劑加入10 μL 經前處理所得的萃取液和1 μL 內標準品溶液中,注射埠設定為90℃下進行衍生化,可以得到良好的矽烷化衍生效果,在10-1000 μg/L 的濃度範圍內,檢量線迴歸係數皆大於0.995。
鹽析輔助式液液萃取法最佳化結果為:以4 mL 乙酸乙酯快速注入含有3 g 硫酸鈉的10 mL 水樣中,經過1 分鐘的振盪後,再以4000 rpm 速率離心5 min,使有機層與水層分開。取出萃取液後,藉由通過無水硫酸鈉管柱除去水分,並以氮氣吹至100 μL,最後取10 μL 待測物溶液和1 μL 的內標準品溶液利用大體積樣品導入裝置進行線上矽烷化衍生後以GCMS來進行檢測,偵測極限為0.01-0.1 μg/L。對其做精密度及準確度的測試,其相對標準偏差(RSDs)皆小於15%,顯示此方法具有良好的再現性。利用標準添加法在不同的水樣中測定的總濃度介於0.16 至0.77 μg/L。
摘要(英) Disinfection by-products (DBPs) are formed by the reaction of disinfectants with natural organic matters in water. Disinfection is an intended means of trying to kill pathogens in various water supplies, however DBPs cause health risks to human. Haloacetamide (HAcAm) is one of the most toxic nitrogenous disinfection by-products (N-DBPs) that raises concern for public health. In the US-EPA, HAcAms have been reported to be much higher cytotoxicity and genotoxicity than currently regulated trihalomethanes (THMs), haloacetic acids (HAAs) and nitrosamines, but the drinking water guideline has not yet been established for these N-DBPs.
In this study, salting-out assisted liquid-liquid extraction (SALLE) coupled with on-line derivatization and gas chromatography-mass spectrometry (GC-MS) method was developed and applied for the first time to determine five HAcAms: CAcAm, DCAcAm, BAcAm, BCAcAm and DBAcAm, in aqueous samples. The optimized on-line derivatization involved the adding 1 μL of N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide with 1% tert-Butyldimethylchlorosilane (MTBSTFA+1% TBDMSCl) reagent to a 10 μL extract (with 1 μL internal standard) from the water sample, which gave an excellent yield of the TBDMS-derivatives of analytes at injection-port temperature of 90 ℃. The linearities of analytes were achieved in the range of 10-1000 μg/L with coefficients of determination (r2) exceeded 0.995.
The optimal conditions of SALLE involved the rapid injection of 4.0 mL of ethyl acetate into 10 mL of water sample containing 3 g of sodium sulfate in a sample tube. After shaking extraction for 1 min and centrifugation at 4000 rpm
(5min), the upper layer was passed through sodium sulfate anhydrous column and evaporated to 100 μL. The extract 10 μL was directly determined by on-line derivatization-GC-MS. The limits of quantitation (LOQs) were 0.01-0.1 μg/L.
Reproducibility was obtained with relative standard deviation (RSDs) better than 15%. The total concentration of these HAcAms in the water samples ranged from 0.11 to 3.81 μg/L.
關鍵字(中) ★ 氣相層析質譜儀
★ 消毒副產物
★ 線上衍生化
關鍵字(英)
論文目次 摘要.................. I
Abstract ............ III
謝誌.................. V
目錄.................. VII
圖目錄................ XI
表目錄................ XIII
第一章 前言................ 1
1-1 研究緣起............... 1
1-2 研究目標............... 3
第二章 文獻回顧............. 5
2-1 消毒副產物 (Disinfection by-products,DBPs) .......... 5
2-2 含氮消毒副產物 (Nitrogenous disinfection by-products,N-DBPs) ..................................... 7
2-2-1 含氮消毒副產物介紹 ..................... 7
2-2-2 鹵乙醯胺的性質 ........................ 9
2-2-3 環境中鹵乙醯胺的形成機制 ................ 13
2-2-4 相關研究文獻 .......................... 16
2-3 氣相層析質譜儀........................... 19
2-3-1 大體積直接進樣裝置 ..................... 21
2-3-2 離子阱質譜儀........................... 23
2-3-3 化學游離法............................. 24
2-4 衍生化技術............................... 25
2-4-1 衍生化技術的種類及條件................... 25
2-4-2 矽烷化反應............................. 26
2-4-3 線上衍生化技術.......................... 28
2-5 鹽析輔助式液液萃取法....................... 30
2-5-1 前言 ................................. 30
2-5-2 鹽析輔助式液液萃取法原理.................. 31
2-5-3 鹽析輔助式液液萃取法流程.................. 32
2-6 標準添加法............................... 33
2-7 線性迴歸 ................................ 36
2-7-1 Mandel test.......................... 36
2-7-2 The Lack-of-Fit by ANOVA............. 38
第三章 實驗步驟與樣品分析...................... 41
3-1 實驗藥品與設備 ........................... 41
3-1-1 實驗藥品.............................. 41
3-1-2 儀器設備.............................. 44
3-2 實驗步驟................................. 45
3-2-1 標準品的配製............................ 45
3-2-2 氣相層析質譜儀的參數設定.................. 46
3-2-3 實驗流程 .............................. 48
3-3 水樣採集................................. 49
第四章 結果與討論.............................. 51
4-1 氣相層析質譜儀對矽烷基化待測物的測定 .......... 51
4-1-1 化學游離法(Chemical ionization,CI) ..... 51
4-1-2 注射埠溫度對線上衍生化效率之影響............ 53
4-1-3 矽烷基化待測物的分析 ..................... 54
4-1-4 矽烷基化待測物質譜圖 ..................... 55
4-1-5 儀器偵測極限 ............................ 58
4-2 鹽析輔助式液液萃取法最佳化條件探討 ............ 60
4-2-1 萃取溶劑與鹽類種類選擇..................... 61
4-2-2 振盪方式比較............................. 63
4-2-3 萃取劑的體積............................. 64
4-2-4 振盪時間................................ 65
4-2-5 鹽類的添加量............................. 66
4-2-6 pH 值.................................. 68
4-2-7 鹽析輔助式液液萃取條件的最佳化結果........... 69
4-3 線性關係及定量分析 ......................... 70
4-3-1 線性關係及偵測極限 ....................... 70
4-3-2 線性方程式適用性 ......................... 72
4-4 真實樣品之檢測............................. 74
4-5 方法精密度及準確度.......................... 83
4-6 方法比較 ................................. 84
第五章 結論 .................................. 85
第六章 參考文獻 ............................... 87
參考文獻 曾新華、丁望賢,離子阱質譜儀,儀器總覽,1998a。
曾新華、丁望賢,液相化學游離法之原理與在分析化學上的應用,科儀新知,1998b,20卷,第二期,86-94。
Bond, T.; Huang, J.; Templeton, M.R.; Graham, N., Occurrence and control of nitrogenous disinfection by-products in drinking water - A review. Water Res., 2011, 45, 4341-4354.
Bond, T.; Templeton, M.R.; Graham, N., Precursors of nitrogenous disinfection by-products in drinking water-A critical review and analysis. J. Hazard. Mater.,2012, 235, 1-16.
Bouland, S.; Duguet, J.-P.; Montiel, A., Evaluation of bromate ions level introduced by sodium hypochlorite during post-disinfection of drinking water. Environ. Technol., 2010, 26, 121-126.
Chu, W.H.; Gao, N.Y.; Deng, Y., Stability of newfound nitrogenous disinfection by-products haloacetamides in drinking water. Chin. J. Org. Chem., 2009a, 29, 1569-1574.
Chu, W.H.; Gao, N.Y., Determination of nitrogenous disinfection byproducts chloroacetamides in drinking water by gas chromatography-mass spectrometry. Chin. J. Anal. Chem., 2009b, 37, 103-106.
Chu, W.H.; Gao, N.Y.; Deng, Y.; Krasner, S.W., Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination. Environ. Sci. Technol., 2010, 44, 3908-3912.
Chu, W.H.; Gao, N.Y.; Deng, Y.; Templeton, M.R.; Yin, D.Q., Formation of nitrogenous disinfection by-products from pre-chloramination. Chemosphere, 2011, 85, 1187-1191.
Chu, W.H.; Gao, N.Y.; Yin, D.Q.; Krasner, S.W.; Templeton, M.R., Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization. J. Chromatogr. A, 2012, 1235, 178-181.
Gross, J.H., Mass Spectrometry - A Textbook, Springer, 2004.
Harris, D.C., Quantitative chemical analysis,6th ed. W.H. Freeman and Company, 2002.
Hou, Y.M.;Xie, J.M.; Yan, Y.S.; Li, S.T.; Wang, L.,Recent progress of application of liquid-liquid extraction with hydrophilic organic solvents of small molecule to analytical chemistry. Chem. Anal. Prat B., 2009, 45, 368-371,
Huang, H.; Wu, Q.Y.; Hu, H.Y.; Mitch, W.A.; Dichloroacetonitrile and dichloroacetamide can form independently during chlorination and chloramination of drinking waters, model organic matters, and wastewater effluents. Environ. Sci. Technol., 2012, 46, 10624-10631.
Kalra, A.; Tugcu, N.; Cramer, S.M.; Garde, S., Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions. J. Phys. Chem. B, 2001, 105, 6380-6386.
Kampioti, A.A.; Stephanou, E.G., The impact of bromide on the formation of neutral and acidic disinfection by-products (DBPs) in Mediterranean chlorinated drinking water. Water Res., 2002, 36, 2596-2606.
Krasner, S.W.; McGuire, M.J.; Jacangelo, J.G.; Patania, N.L.; Reagan, K.M.; Aieta, E.M., The occurrence of disinfection by-products in US drinking water. J.Am. Water Works Assoc., 1989, 81, 41-53.
Krasner, S.W.; Weinberg, H.S.; Richardson, S.D.; Pastor, S.J.; Chinn, R.; Sclimenti, M.J.; Onstad, G.D.; Thruston, A.D., Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol., 2006, 40, 7175-7185.
Leggett, D.C.; Jenkins, T.F.; Miyares, P.H., Salting-out solvent extraction for preconcentration of neutral polar organic solutes from water. Anal Chem., 1990, 62, 1355-1356.
Liew, D.; Linge, K.L.; Joll, C.A.; Heitz, A.; Charrois, J.W.A., Determination of halonitromethanes and haloacetamides: An evaluation of sample preservation and analyte stability in drinking water. J. Chromatogr. A, 2012, 1241, 117-122.
Liu, H.; Bowes, R.C.; van de Water, B.; Sillence, C.; Nagelkerke, J.F.; Stevens, J.L., Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances and cell death in renal epithelial cells. J. Biol Chem., 1997, 272, 21751-21759.
Liu, J.; Jiang, M.; Li, G.; Xu, L.; Xie, M., Miniaturized salting-out liquid–liquid extraction of sulfonamides from different matrices. Anal. Chim. Acta, 2010, 679, 74-80.
Majors, R.E., Salting-out liquid-liquid extraction (SALLE). LCGC, 2009, 526-533.
Noche, G.G.; Laespada, M.E.F.; Jose Luis Perez Pavon; Cordero, B.M.; Lorenzo, S.M., In situ aqueous derivatization and determination of non-steroidal anti-inflammatory drugs by salting-out-assisted liquid–liquid extraction and gas chromatography–mass spectrometry. J. Chromatogr. A, 2011, 1218, 6240-6247.
Plewa, M.J.; Muellner, M.G.; Richardson, S.D.; Fasanot, F.; Buettner, K.M.; Woo, Y.T.; McKague, A.B.; Wagner, E.D., Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts. Environ. Sci. Technol., 2008, 42, 955-961.
Reckhow, D.A.; MacNeill, A.L.; Platt, T.L.; McClellan, J.N., Formation and degradation of dichloroacetonitrile in drinking waters. J. Water Supply Res. Technol., 2001, 50, 1-13.
Richardson, S.D.; Thruston Jr., A.D.; Caughtran, T.V.; Chen, P.H.; Collette, T.W.; Floyd, T.L.; Schenck, K.M.; Lykins Jr., B.W.; Sun, G-.R.; Majetich, G.,Identification of new drinking water disinfection byproducts formed in presence of bromide. Environ. Sci. Technol., 1999, 33, 3378–3383
Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M., Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res., 2007, 636, 178-242.
Richardson, S.D.; DeMarini, D.M.; Kogevinas, M.; Fernandez, P.; Marco, E.; Lourencetti, C.; Balleste, C.; Heederik, D.; Meliefste, K.; McKague, A.B.; Marcos, R.;Font-Ribera, L.; Grimalt, J.O.; Villanueva, C.M., What’s in the pool? a comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ. Health Perspect., 2010, 118, 1523-1530
Sadiq, R.; Rodriguez, M.J., Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci. Total Environ., 2004, 321, 21-46.
Shah, A.D.; Mitch, W.A., Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways. Environ. Sci. Technol. 2012, 46, 119-131.
Skoog, D.A.; Holler, F.J.; Nieman, T.A., Principles of instrumental analysis. 5th ed. Thomoson Learning, 2002.
Takahashi, M.; Shirai, T.; Fukushima, S.; Hahanouchi, M.; Hirose, M.; Effect of fundic ulcers induced by iodoacetamide on development of gastric tumors in rats treated with N-methyl- N′-nitro-N-nitrosoguanidine. GANN, 1976, 67, 47-54.
Tzing, S.-H.; Ghule, A.; Chang, J.-Y.; Ling, Y.-C.; Selective adduct formation by furan chemical ionization reagent in gas chromatography ion trap mass spectrometry. J. Mass Spectrom., 2003, 38, 401-408.
Weinberg, H.S.; Krasner, S.W.; Richardson, S.D.; Thruston, A.D., The occurrence of disinfection by-products (DBPs) of health concern in drinking water: Results of a nationwide DBP occurrence study Athens, GA, 2002. http://www.epa.gov/athens/publications/reports/EPA_600_R02_068.pdf.
指導教授 丁望賢 審核日期 2014-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明