博碩士論文 101324060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:18.223.171.12
姓名 莊玟寧(Wen-Ning Chuang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 無助焊劑下錫鎳與錫銅合金在鎳金與鎳鈀金上之濕潤行為研究
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於助焊劑可以有效移除液態焊料表面的氧化層,並確保在迴焊過程中達到好的濕潤性,因此,助焊劑廣泛用於電子封裝。然而,迴焊過程添加的助焊劑會有殘留的問題,殘留的助焊劑會汙染電子元件晶片,導致壽命減短。由此可見,在電子封裝工業領域,發展不添加助焊劑的迴焊技術是個重要的議題。
本實驗在不使用助焊劑下,實驗溫度為330℃,選用不同成分銅、鎳添加的四種錫銅與錫鎳焊料,Sn0.2wt.%Cu、Sn0.7 wt.%Cu、Sn1.2 wt.%Cu、Sn2 wt.%Cu及Sn0.2 wt.%Ni、Sn0.7 wt.%Ni、Sn1.2 wt.%Ni、Sn2 wt.%Ni,於還原氣體的氣氛下,分別迴焊於鎳鈀金(ENEPIG)以及鎳金(ENIG)基板上,進行迴焊30秒。我們從微結構分析上,發現迴焊過程中焊料內部析出的介金屬化合物(IMC)愈多則濕潤性愈差。錫鎳焊料迴焊於鎳鈀金基板上的濕潤性較迴焊於鎳金基板上良好,因為鈀原子從鎳鈀金基板溶入錫鎳焊料中,鈀原子會與鎳原子在焊料與基板的介面形成一穩定相-(Ni, Pd)3Sn4 ,因此,錫鎳焊料中存在較少鎳原子可在焊料內部IMC。除此之外,我們也發現錫銅焊料迴焊於鎳金基板上的濕潤性較迴焊於鎳鈀金基板上良好,因為鈀原子從鎳鈀金基板溶入錫銅焊料中,鈀原子會與銅原子反應,將銅原子抓入焊料中,集中於焊料兩側生成大量(Cu, Ni, Pd)6Sn5,而焊料與基板介面擁有較少的銅原子可形成IMC。
綜合以上,我們得知IMC析出於焊料當中會影響其濕潤性,從過去文獻中也可佐證,這是由於愈多IMC析出於焊料當中,焊料的黏度會提高,表面張力也隨之變大,並產生一內聚力於焊料當中,導致焊料的濕潤性表現較差。
摘要(英) The flux has been widely used for soldering in the electronic package, since the flux can effectively remove the oxidation layer of the molten solder and ensure a good wetting during the reflow process. However, after the reflow process, the residual flux will cause the life-time degradation of the solder joints. Therefore, developing the fluxlessreflow process is an important issue for the IC package industry.
In this study, without using flux, the Sn-based solders (SnCu, SnNi) were reflowed on the PCB with ENIG (Cu/Ni(P)/Au) and ENEPIG(Cu/Ni(P)/Pd/Au).We found that all solders show reasonably good wetting on the ENIG and ENEPIG substrate at relatively high temperature, above 330 C. The surface area become wider during wetting. At this moment, the surface energy increase and very unstable. For reach a stable status, Solder by changing the structure of surface or surface segregation to reduce the surface energy. We can observe that many solid segregated in solder. Therefore, we believe that solder by segregating compound in solder to reduce surface energy.
For these results, Compounds precipitated in solder matrix during wetting caused viscosity of solder increase; at the same time, surface tension increase. Higher surface tension of solder will generate higher cohesion of molten solder, leading to poor wettability. Therefore, compound in solder matrix cause poor wettability during wetting.
關鍵字(中) ★ 焊料
★ 錫鎳
★ 錫銅
★ 鎳金
★ 鎳鈀金
★ 濕潤性
關鍵字(英) ★ solder
★ SnNi
★ SnCu
★ ENIG
★ ENEPIG
★ wettability
論文目次 中文摘要 ..................................................................................................... I
英文摘要 ................................................................................................... III
致謝 .......................................................................................................... IV
圖目錄 .................................................................................................... VIII
表目錄 ...................................................................................................... XI
第一章 緒論............................................................................................... 1
1.1 研究背景 ........................................................................................... 1
1.2 無鉛焊料 ........................................................................................... 2
1.3 無助焊劑添加下迴焊製程 ............................................................... 3
第二章 文獻回顧 ...................................................................................... 5
2.1 錫銅焊料 ........................................................................................... 5
2.2 錫鎳焊料 ........................................................................................... 9
2.3 表面處理法的演進 ......................................................................... 12
2.3.1 添加鈀層於鎳金板當中的功效 ............................................... 14
2.4 濕潤性 ............................................................................................. 16
2.5 助焊劑 ............................................................................................. 19
第三章 研究動機 .................................................................................... 21
第四章 實驗步驟與方法 ........................................................................ 22
4.1 試片製作 ........................................................................................ 22
4.2 試片觀察 ........................................................................................ 25
4.2.1 掃描式電子顯微鏡 .................................................................. 25
4.2.2 背向散射電子偵測器 ............................................................... 25
第五章 實驗結果與討論 ........................................................................ 27
5-1 錫鎳焊料在鎳金基板上的濕潤性 ................................................ 27
5.2 錫鎳焊料在鎳鈀金基板上的濕潤性 ............................................. 31
5.3 錫銅焊料在鎳金基板上的濕潤性 ................................................. 36
5.4 錫銅焊料在鎳鈀金基板上的濕潤性 ............................................. 41
5.5 由表面張力觀點,探討介金屬化合物與濕潤性的關係 ............ 47
5.5.1 不考慮焊料內部介金屬化合物,表面張力與濕潤性 .......... 47
5.5.2 探討焊料內部介金屬化合物,表面張力與濕潤性 .............. 50
第六章 結論............................................................................................. 54
參考文獻 ................................................................................................... 58
參考文獻 1 P. J. Clarke, A. K. Ray, and C. A. Hogarth, International Journal of Electronics 69, 333 (1990).
2 N. W. Cheung J. Tao, C. Hu, IEEE Transactions on Electron Devices 43 (11), 1819 (1996).
3 K. Sawada M. Sekiguchi, M. Fukumoto, T. Kouzaki, Journal of Vacuum Science & Technology B 12, 2992 (1994).
4 C Chiu, presented at the Society of Photographic Instrumentation Engineers, Philadelphia, USA, 1997 (unpublished).
5 R Banks, Surface Mount International Journal of Electronics, 121 (1996).
6 Rao R. Tummala, Fundamentals of Microsystems Packaging. (McGRAW-HILL, 2001).
7 D. R. Frear P.T Vianco, Journal of Management 45 (7), 14 (1993).
8 A. Girusd A. Z. Miric, Soldering and Surface Mount Technology 10, 199 (1998).
9 D. Moynihan H. Reid, J. Leiberman, B. Bradley, (1990), Vol. S-2638.
10 J. Glazer, International Materials Reviews 40 (2), 65 (1995).
11 S. Jin M. McCormack, Journal of Electronic Materials 23 (7), 687 (1994).
12 S. Choi F. Guo, J.P. Lucas, K.N. Subramanian, Journal of Electronic Materials 29 (10), 1241 (2000).
13 F.M. Hosking P.T. Vianco, J.A. Rejent, presented at the National Electronics Products Conference, Anaheim, CA (USA), 1992 (unpublished).
14 A. Skipor C. Melton, J. Thome, in National Electronic Packaging and Production Conference (1993), p. 1489.
15 L. M. Higgins C. Beddingfield, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part C 21 (3), 189 (1998).
16 C. J. Raleigh S. M. Scheifers, presented at the American Society of Mechanical Engineers, 1995 (unpublished).
17 S. Bobbio N. Koopman, S. Nangalia, J. Bousaba, presented at the Electronic Components and Technology Conference, 1993 (unpublished).
18 M. Ijuin T. Nishikawa, R. Satoh, Y. Iwata, M. Tamura, M. Shirai, presented at the Electronic Components and Technology Conference, 1994 (unpublished).
19 V. Duhler K. Markus, D. Roberson, A. Cowen, M. Berry, S. Nangalia, presented at the Society of Photographic Instrumentation Engineers: Smart Materials Conference, 1995 (unpublished).
20 J. F. Kubmann M. Heschel, S. Bouwstra, M. Amskov, presented at the Micro Electro Mechanical Systems, 1998 (unpublished).
21 M. F. Brady R. D. Deshmukh, R. A. Roll, L. A. King, International Journal of Microcircuits and Electronic 16 (2), 97 (1993).
22 I. Yoncda M. Itho, H. Hontnou, K. Fukushima, T. Nagahori, in Electronic Packaging Technology (1996), pp. 75.
23 K. Boustedt, in ISHM Nordic Conference (1996), pp. 116.
24 E. Jung H. Jiang, D. Lin, E. Zakel, H. Reichl, Microsystem Technologies, 111 (1996).
25 Y. W. Wang, Y. W. Lin, C. T. Tu, and C. R. Kao, Journal of Alloys and Compounds 478, 121 (2008).
26 J. W. Morris F. Bartels, JR, Journal of Electronic Materials 23 (8), 787 (1994).
27 C. R. Kao A. Hayashi, Y. A. Chang, Scripta Materialia 37 (4), 393 (1997).
28 C. R. Kao, Materials Science and Engineering A 238 (1), 196 (1997).
29 K. N. Tu, Acta Metallurgica 30 (5), 947 (1982).
30 K. N. Tu, Materials Chemistry and Physics 46 (2-3), 217 (1996).
31 A. P. Miodownik N. Saunders, ASE Handbook. (1992), pp.2.
32 C. E. Ho W. T. Chen, C. R. Kao, Journal of Materials Research 17 (2), 263 (2002).
33 A. Nash P. Nash, ASE Handbook. (1992), pp.2.
34 W. Gust S. Bader, H. Hieber, Acta Metallurgica et Materialia 43 (1), 329 (1995).
35 J. Haimovich, Welding Journal: Research Supplement 68 (3), 102 (1989).
36 W. Gust S. Bader, H. Hieber, Acta Metallurgica et Materialia 43 (1), 329 (1995).
37 S. A. Stolk J. A. van Beek, F. J. J. van Loo, Z Metallkde 73, 441 (1982).
38 P. G. Kim J. W. Jang, K. N. Tu, D. R. Frear, P. Thompson, Journal of Applied Physics 85, 8456 (1999).
39 M. Bamberger D. Gur, Acta Materialia 46 (14), 4917 (1998).
40 S.J Lee B.K Kim, J. Y Kim, K. Y. Ji at el, Journal of Electronic Materials 37 (4), 527 (2008).
41 楊延容, 「鎳鈀金對於鎳金的優點」. (裕維電子, 2010), p.1.
42 Lam Leung, 印刷線路板技術. (科技專刊, 2008).
43 陳文泰, 錫銅無鉛銲料與Ni基材界面反應之研究. (1991).
44 Deming Liu Lilin Liu, Ran Fu, Yiu Fai Kwan, Chun Ho Yau, Tong-Yi Zhang, presented at the Electronic Packaging Technology & High Density Packaging, 2006 (unpublished).
45 F. G. Yost, presented at the Metals and Materials Society of AIME 1992 (unpublished).
46 H. H. Manko, Solders and Soldering. (McGraw-Hill 1992), p.63.
47 C.M. Gourlay S.A. Belyakov, Journal of Electronic Materials 41 (12), 3331 (2012).
48 Sheng-Wei Lin Cheng-En Ho, Yen-Chen Lin, Journal of Alloys and Compounds 209, 7749~7757 (2011).
49 T. Takemoto F. Gao, H. Nishikawa, Materials Science and Engineering A 420, 39 (2006).
50 X.M. Pan N. Zhao, D.Q. Yu,H.T. Ma,L. Wang, Journal of Electronic Materials 38 (6), 828 (2009).
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2014-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明