博碩士論文 101324062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.188.40.207
姓名 張智盈(Chih-ying Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 釩/二氧化鈦之合成及其在可見光下的光催化反應
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 二氧化鈦在光觸媒反應中是常見的使用材料,然而,其能隙較大(銳鈦礦為3.2 eV)需要紫外光來活化觸媒,因此在實際的應用上受到了許多限制。本研究以溶膠凝膠法(sol-gel method)製備不同偏釩酸銨/二氧化鈦重量比之中性氧化釩/二氧化鈦溶膠,另外,以浸塗法製備不同比例之氧化釩/二氧化鈦薄膜。本研究目的是研究其在紫外光或可見光下降解有機染料之光催化活性。從研究中發現摻雜釩於二氧化鈦中可減少能隙至2.65 eV,而由HRTEM顯微圖中可發現摻雜釩會使二氧化鈦顆粒由針狀變成不規則立方狀,另外在XRD與XPS分析中可知摻雜之釩離子會以V4+及V5+之離子型態存在,V4+離子取代二氧化鈦晶格中的Ti4+離子,其可增加可見光的吸收,而V5+離子以氧化釩型態存在二氧化鈦表面可分離光誘導電子。
光反應活性之鑑定以10 ppm亞甲基藍水溶液為光反應標準物,以20 W 波長為254 nm 的紫外光燈管當作紫外光照射光源,並以27W可見光燈管當作可見光照射光源,光降解樣品取樣利用紫外可見光光譜儀(UV-vis)分析濃度。由光催化降解結果顯示氧化釩/二氧化鈦在紫外光與可見光下皆具有較高的光催化活性。

摘要(英) Titanium dioxide has been widely used for the photocatalytic reaction. However, the practical application of TiO2 as a photocatalyst is limited by its large band-gap energy (3.2 eV for anatase), which requires ultraviolet light to activate. In this study, V-doped TiO2 neutral sols with various NH4VO3/TiO2 weight ratios were prepared by sol-gel method. A series of V-doped TiO2 thin films were prepared by dip-coating technique. This study aims to investigate the photocatalytic activity for degradation of organic dye under the UV light and visible light irradiation.
It was found that doping vanadium can reduce the band-gap energy value to 2.65 eV. The HRTEM photos showed that doping vanadium in TiO2 cause the particle morphology change from needle shape to irregular cubic shape. XRD patterns, XPS results showed the vanadium ions which in form of V4+ ions and V5+ ions were incorporated in TiO2 lattice. V4+ ions present in the substitutional site of Ti4+ in TiO2 lattice are responsible for increasing visible light absorption while V5+ ions present in the form of V2O5 islands on the surface of TiO2 particles are responsible for separation the photo-induced electrons.
The photoreaction was carried out in a 10 ppm methylene blue solution with 20 W 254 nm UV light as the UV light source or 27 W visible light as the visible light source. The concentration of MB in the degradation samples were measured by UV-vis spectrometer (UV-vis). The V-doped TiO2 showed the higher photocatalytic activity than pure titania under UV light and visible light irradiation due to the significantly reduction of band gap energy, which may improve the photoactivity.
關鍵字(中) ★ 氧化釩/二氧化鈦
★ 溶膠凝膠法
★ 光催化降解
關鍵字(英) ★ V-doped TiO2
★ sol gel method
★ photocatalytic degradation
論文目次 Table of Contents
中文摘要 i
ABSTRACT ii
Table of Contents iii
List of Figures vi
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Literature Review 2
2.1 Introduction 2
2.2 Electronic and structural properties of titanium dioxide 4
2.2.1 Electronic properties of titanium dioxide 4
2.2.2 Structure of titanium dioxide 5
2.3 Mechanism of TiO2 photocatalysis 6
2.4 Preparation methods of TiO2 thin film 8
2.4.1 Chemical vapor deposition 8
2.4.2 Sputtering 10
2.4.3 Spin coating 12
2.4.4 Dip coating 13
2.5 Modification of titanium dioxide 15
2.5.1 Rare earth metal doping 15
2.5.2 Noble metal doping 16
2.5.3 Transition metal doping 16
2.5.4 Non-metal doping 17
2.6 V-doped TiO2 as photocatalyst and self-cleaning film 18
2.7 Band gap of films 22
2.8 References 23
Chapter 3 Expetimental 29
3.1 Materials 29
3.2 Methodology 29
3.2.1 Synthesis of TiO2 and V-doped TiO2 sols 29
3.2.2 Preparation of TiO2 and V-doped TiO2 films 31
3.3 Characterization 33
3.3.1 X-Ray Diffraction (XRD) 33
3.3.2 Transmission Electron Microscopy (TEM) and High-resolution Electron Microscopy (HRTEM) 35
3.3.3 Scanning Electron Microscopy (SEM) 36
3.3.4 X-Ray Photoelectron Spectroscopy (XPS) 36
3.3.5 UV-Visible Spectrophotometer 37
3.4 Degradation of methylene blue 38
3.4.1 Photocatalytic activity under UV light irradiation 40
3.4.2 Photocatalytic activity under Visible light irradiation 42
3.5 References 43
Chapter 4 Preparation of Titanium Dioxide and Vanadium-doped Titanium Dioxide Thin Film, and its Application on Photocatalytic Degradation of Methylene Blue 44
4.1 Abstract 44
4.2 Introduction 45
4.3 Experimental 46
4.3.1 Materials 46
4.3.2 Synthesis of TiO2 and V-doped TiO2 sols 46
4.3.3 Preparation of TiO2 and V-doped TiO2 films 47
4.3.4 Photocatalytic activity 48
4.3.5 Characterization 49
4.4 Results and discussion 50
4.4.1 Characteristics of TiO2 and V-doped TiO2 sols 50
4.4.2 XRD 51
4.4.3 SEM 54
4.4.4 TEM and HRTEM 57
4.4.5 XPS 59
4.4.6 UV-vis 72
4.4.7 Photodegradation of methylene blue under UV light irradiation 76
4.4.8 Photodegradation of methylene blue under visible light irradiation 80
4.4.9 Effect of V-doped TiO2 thin film after calcination 83
4.5 Conclusion 85
4.6 References 87

List of Figures
Figure 2.1 Application of titanium dioxide photocatalyst. (Nakata et al., 2012) 3
Figure 2.2 Schematic illustration of the formation of photo-induced electron-hole pair upon absorption of UV light. (Nakata et al., 2012) 4
Figure 2.3 Bulk structures of rutile and anatase. (Diebold, 2003) 6
Figure 2.4 Absorption response region of TiO2. (Daghrir, 2013) 7
Figure 2.5 The diagram of APCVD equipment: 1-mass flow meter; 2-two-ports valve; 3-three-ports valve; 4-TiCl4; 5-constant temperature oven; 6-reaction chamber; 7-glass substrate; 8-hot plate; 9-stepping motor; 10-moving spray nozzle (Guo et al., 2007). 9
Figure 2.6 Schematic diagram of the sputtering components: 1-water cooling; 2-heating resistors; 3-substrates; 4-target; 5-permanent magnets; 6-shield; 7-insulator; 8-RF cable; 9-thermocouple; 10-gas inlet; 11-pumping system. (Leite et al., 2006) 11
Figure 2.7 Schematic diagram of (a) undoped TiO2, and (b) V-doped TiO2. 19
Figure 3.1 Preparation steps of TiO2 and V-doped TiO2 sol. 31
Figure 3.2 Preparation of film by dip-coating method. 32
Figure 3.3 X-ray diffractometer. 33
Figure 3.4 XRD pattern of anatase structure TiO2 (JCPDS–ICDD 1997, JCPDS–International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073–3273 U.S.A.). 34
Figure 3.5 XRD pattern of rutile structure TiO2 (JCPDS–ICDD 1997, JCPDS–International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073–3273 U.S.A.). 34
Figure 3.6 High-resolution Electron Microscopy (HRTEM). 35
Figure 3.7 Scanning Electron Microscopy (SEM). 36
Figure 3.8 X-Ray Photoelectron Spectroscopy (XPS). 37
Figure 3.9 UV-Visible Spectrophotometer. 38
Figure 3.10 Adsorption spectra of MB aqueous solution in various concentrations. 39
Figure 3.11 Calibration curve of MB aqueous solution at wavelength of 664 nm. 39
Figure 3.12 Degradation of MB aqueous solution under UV light irradiation. 40
Figure 3.13 Photocatalytic reactor for the study of photoreactivity under UV light irradiation. 41
Figure 3.14 Degradation of MB aqueous solution under visible light irradiation. 42
Figure 4.1 Schematic diagram of degradation of MB aqueous solution under UV light and visible light irradiation. 48
Figure 4.2 The as-prepared (a) TiO2 sol, (b) VT1 sol, (c) VT2 sol, (d) VT3 sol, and (e) VT4 sol. 50
Figure 4.3 XRD patterns of samples without calcination process. 52
Figure 4.4 XRD patterns of (a) TiO2, (b) VT1, (c) VT2, (d) VT3, and (e) VT4 samples after calcination process. 53
Figure 4.5 Cross-section SEM images of (a) TiO2 film, (b) VT2 film coating 3 times on the glass substrate. 55
Figure 4.6 Top-view SEM images of (a) TiO2 film, (b) TiO2 film after calciantion, (c) VT1 film, (d) VT1 film after calcination, (e) VT2 film, and (f) VT2 film after calcination on the glass substrate. 56
Figure 4.7 HRTEM images of (a) TiO2, (b) VT1, and (c) VT2 particles showing the morphology dispersed in sol prepared at the heating temperature of 95 oC for 12 hours. 57
Figure 4.8 HRTEM images of VT2 particles showing the lattice spacing of 0.347 nm corresponding to the anatase plane of (101). 59
Figure 4.9 XPS spectra of Ti 2p region: (a) pure TiO2, (b) VT1, (c) VT2, and (d) VT3. 60
Figure 4.10 XPS spectra of Ti 2p3/2 region: (a) pure TiO2, (b) VT1, (c) VT2, and (d) VT3. 61
Figure 4.11 The O 1s XPS spectrum of undoped TiO2 and V-doped TiO2. 64
Figure 4.12 XPS spectra of O 1s region: (a) pure TiO2, (b) VT1, (c) VT2, and (d) VT3. 65
Figure 4.13 Schematic diagram of V ion in TiO2 lattice. (Wang et al., 2005) 69
Figure 4.14 XPS spectra of V 2p3/2 region: (a) VT1, (b) VT2, and (c) VT3. 69
Figure 4.15 UV-vis absorption spectra of undoped TiO2 and V-doped TiO2. 73
Figure 4.16 Band-gap energy of (a) TiO2 film, (b) VT1 film, (c) VT2 film, (d) VT3 film, and (e) VT4 film obtained by plotting (αhν)1/2 versus photo energy (hν) of Tauc model. 74
Figure 4.17 Photocatalytic degradation of methylene blue under UV light irradiation. 78
Figure 4.18 Photocatalytic activities under UV light irradiation by plotting ln(C0/C) versus irradiation time. 78
Figure 4.19 Photocatalytic degradation of methylene blue under visible light irradiation. 81
Figure 4.20 Photocatalytic activities under visible light irradiation by plotting ln(C0/C) versus irradiation time. 81
Figure 4.21 Photocatalytic degradation of methylene blue under UV light irradiation. 84
Figure 4.22 The appearance of (a) VT2 film before calcination, and (b) VT2 film after calcination. 84

List of Tables
Table 2.1 Summary of polymorphs of TiO2. 5
Table 2.2 Summary of preparation and application of vanadium doped titanium dioxide photocatalyst. 21
Table 4.1 pH value of the as-prepared sols. 51
Table 4.2 Crystallite size of TiO2 and V-doped TiO2. 53
Table 4.3 Ti 2p3/2 XPS data and the total area of undoped TiO2 and V-doped TiO2 film. 63
Table 4.4 O 1s XPS data and the total area of undoped TiO2 and V-doped TiO2 film. 67
Table 4.5 V 2p3/2 XPS data and the total area of V-doped TiO2 film. 71
Table 4.6 Band-gap of films obtained by extrapolation of Tauc model. 75
Table 4.7 Rate constant (h-1) of reactions obtained from apparent first-order kinetic under UV light irradiation. 79
Table 4.8 Rate constant (h-1) of reactions obtained from apparent first-order kinetic under visible light irradiation. 82
參考文獻 Anpo, M., Y. Ichihashi, M. Takeuchi, H. Yamashita, “Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation”, Res. Chem. Intermediates 24 (1998) 143-149.

Asilturk, M., F. Sayilkan, E. Arpac, “Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation”, J. Photochem. Photobiol. A 203 (2009) 64-71.

Chang, S.M., W.S. Liu, “Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2”, Applied Catalysis B 101 (2011) 333-342.

Cimieri, I., H. Poelman, J. Ryckaert, and D. Poelman, “Novel sol-gel preparation of V-TiO2 films for the photocatalytic oxidation of ethanol in air”, J. Photochem. Photobio. A: Chem. 263 (2013) 1-7.

Daghrir, R., P. Drogui, and D. Robert, “Modified TiO2 For Environmental Photocatalytic Applications: A Review”, Ind. Eng. Chem. Res. 52 (2013) 3581-3599.

Diebold, U., “The surface science of titanium dioxide”, Surf. Sci. Rep. 48 (2003) 53-229.

Fujishima, A., X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena”, Surface Science Reports 63 (2008) 515-582.

Grabowska, E., H. Remita, A. Zaleska, “Photocatalytic activity of TiO2 loaded with metal clusters”, Physicochem. Probl. Miner. Process. 45 (2010) 29-38.

Guo, Y., X. W. Zhang, W. H. Weng, and G. R. Han, “Structure and properties of nitrogen-doped titanium dioxide thin films grown by atmospheric pressure chemical vapor deposition”, Thin Solid Films 515 (2007) 7117-7121.

Jaiswal, R., N. Patel, D.C. Kothari, and A. Miotello, “Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen”, Applied Catalysis B: Enviromental 126 (2012) 47-54.

Khan, M., Y. Song, N. Chen, and W. Cao, “Effect of V-doping concentration on the electronic structure, optical and photocatalytic properties of nano-sized V-doped anatase TiO2”, Mater, Chem. Phys. 142 (2013) 148-153.

Kisch, H., L. Zang, C. Lange, W. F. Maier, C. Antonius, D. Meissner, “Modified amorphous titania-A hybrid semiconductor for detoxification and current generation by visible light”. Angew. Chem. Int. Ed. 37 (1998) 3034-3036.

Klosek, S., D. Raftery, “ Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol”, J. Phys. Chem. B. 105 (2001) 2815-2819.

?abuz, P., R. Sadowski, G. Stochel, W. Macyk, “Visible light photoactive titanium dioxide aqueous colloids and coatings”, Chem. Eng. J. 230 (2013) 188-194.

Leite, D.M.G., A. L. J. Pereira, L. F. da Silva, and J. H. Dias da Silva, “Nanocrystalline GaN and GaN: H films grown by RF-magnetron sputtering”, Braz. J. Phys. 36 (2006) 978-981.

Li, F., L. X. Guan, M. L. Dai, J. J. Feng, and M. M. Yao, “Effects of V and Zn codoping on the microstructures and photocatalytic activities of nanocrystalline TiO2 films”, Ceramics International 39 (2013) 7395-7400.

Li, L., C. Y. Liu, and Y. Liu, “Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light”, Mater. Chem. Phys. 113 (2009) 551-557.

Liu, B., X. Wang, G. Cai, L. Wen, Y. Song, and X. Zhao, “Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies”, J. Hazard. Mater. 169 (2009) 1112-1118.

Liu, J., R. Han, Y. Zhao, H. Wang, W. Lu, T. Yu, and Y. Zhang, “Enhanced Photoactivity of V-N Codoped TiO2 Derived from a Two-Step Hydrothermal Procedure for the Degradation of PCP-Na under Visible Light Irradiation”, J. Phys. Chem. C 115 (2011) 4507-4515.

Liu, Z., J. Ya, L.E, Y. Xin, and W. Zhao, “Effect of V doping on the band-gap reduction of porous TiO2 films prepared by sol-gel route”, Mater. Chem. Phys. 120 (2010) 277-281.

Lu, X.C., J.C. Jiang, K. Sun, D.D. Cui, “Characterization and photocatalytic activity of Zn2+-TiO2/AC composite photocatalyst”, Applied Surface Science 258 (2011) 1656-1661.

Martin, S. T., C. L. Morrison , and M. R. Hoffmann, “Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles”, J. Phys. Chem. 98 (1994) 13695-13704.

Melghit, K., O. S. Al-Shukeili, and I. Al-Amri, “Effect of M-doping (M = Fe, V) on the photocatalytic activity of nanorod rutile TiO2 for Congo red degradation under the sunlight”, Ceramics International 35 (2009) 433-439.

Mohamed, M. M., M. M. Al-Esaimi, “Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye”, J. Mol. Catal. A: Chem. 255 (2006) 53-61.

Nakata, K., and A. Fujishima, “TiO2 photocatalysis: Design and applications”, J. Photochem. Photobiol. C: Photochem. Rev. 13 (2012) 169-189.

Nguyen, T. B., M. J. Hwang, and K. S. Ryu, “High adsorption capacity of V-doped TiO2 for decolorization of methylene blue”, Applied Surface Science 258 (2012) 7299-7305.

Patel, N., R. Jaiswal, T. Warang, G. Scarduelli, Alpa Dashora, B. L. Ahuja, D.C. Kothari, and A. Miotello, “Efficient photocatalytic degradation of organic water pollutants using V–N-codoped TiO2 thin films”, Appl. Catal. B. Environ. 150-151 (2014) 74-81.

Shen, G.X., Y.C. Chen, C.J. Lin, “Preparation of Nano TiO2-V2O5 Composite Coating and Its Fuctions in Corrosion Protection of Metals”, Acta. Phys. –Chim. Sin. 21 (2005) 485-489.

Teh, C.M., A. R. Mohamed, “Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review”, J. Alloys Compd. 509 (2011) 1648-1660.

Thuy, N. M., D. Q. Van, and L. T. H. Hai, “The Visible Light Activity of the TiO2 and TiO2: V4+ Photocatalyst”, Nanomater. Nanotechnol. 2 (2012) 1-8.

Wu, J. C.-S., C. H. Chen, “A visible-light response vanadium-doped titania nanocatalyst by sol-gel method”, J. Photochem. Photobio. A: Chem. 163 (2004) 509-515.

Xu, J., Y. Ao, M. Chen, D. Fu, C. Yuan, “ Photocatalytic activity of vanadium-doped titaniua-activated carbon composite film under visible light”, Thin Solid Films 518 (2010) 4170-4174.

Xu, Y. H., C. Chen, X.L. Yang, X. Li, B.F. Wang, “Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes”, Applied Surface Science 255 (2009) 8624-8628.

Yang, X., C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal, and K. Klabunde, “ Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde”, Journal of Catalysis 252 (2007) 296-302.

Zhang, D. R., H. L. Liu, S. Y. Han, and W. X. Piao, “Synthesis of Sc and V-doped TiO2 nanoparticles and photodegradation of rhodamine-B”, J. Ind. Eng. Chem. 19 (2013) 1838-1844.

Zhao, G., H. Kozuka, H. Lin, T. Yoko, “Sol-gel preparation of Ti1-x-VxO2 solid solution film electrodes with conspicuous photoresponse in the visible region”, Thin Solid Films 339 (1999) 123-128.

Patel, N., R. Jaiswal, T. Warang, G. Scarduelli, Alpa Dashora, B. L. Ahuja, D.C. Kothari, and A. Miotello, “Efficient photocatalytic degradation of organic water pollutants using V–N-codoped TiO2 thin films”, Appl. Catal. B. Environ. 150-151 (2014) 74-81.

Mohamed, M. M., M. M. Al-Esaimi, “Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye”, J. Mol. Catal. A: Chem. 255 (2006) 53-61.

Dholam, R., N. Patel, A. Miotello, “Efficient H2 production by water-splitting using indium-tin-oxide/V-doped TiO2 multilayer thin film photocatalyst”, International Journal of Hydrogen Energy 36 (2011) 6519-6528.

Fujishima, A., X. Zhang, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena”, Surface Science Reports 63 (2008) 515-582.

Hashimoto, K., H. Irie, A. Fujishima, “TiO2 Photocatalysis: A Historical Overview and Future Prospects”, Japan. J. Appl. Phys. 44 (2005) 8269-8285.

Huang, C.H.; Bai, H.L.; Huang, Y.L.; Liu, S.L.; Yen, S.; Tseng, Y.H. Synthesis of neutral SiO2/TiO2 hydrosol and its application as antireflective self-cleaning thin film. Int. J. Photoenergy (2012), 1-8.

Jaiswal, R., N. Patel, D.C. Kothari, and A. Miotello, “Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen”, Applied Catalysis B: Enviromental 126 (2012) 47-54.

Khan, M., Y. Song, N. Chen, and W. Cao, “Effect of V-doping concentration on the electronic structure, optical and photocatalytic properties of nano-sized V-doped anatase TiO2”, Mater, Chem. Phys. 142 (2013) 148-153.

Li, F., L. X. Guan, M. L. Dai, J. J. Feng, and M. M. Yao, “Effects of V and Zn codoping on the microstructures and photocatalytic activities of nanocrystalline TiO2 films”, Ceramics International 39 (2013) 7395-7400.

Li, H., G. Zhao., Z. Chen, G. Han, B. Song, “Low temperature synthsis of visible light-driven vanadium doped titania photocatalyst”, J. Colloid Interface Sci. 344 (2010) 247-250.

Li, L., C. Y. Liu, and Y. Liu, “Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light”, Mater. Chem. Phys. 113 (2009) 551-557.

Liu, B., X. Wang, G. Cai, L. Wen, Y. Song, and X. Zhao, “Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies”, J. Hazard. Mater. 169 (2009) 1112-1118.

Liu, H.L., T.T. Yao, W.Y. Ding, H.L. Wang, D.Y. Ju, and W.P. Chai, “Study on the optical property and surface morphology of N doped TiO2 film deposited with different N2 flow rates by DCPMS”, J. Environ. Sci. 25 (2013) S54-S58.

Liu, J., R. Han, Y. Zhao, H. Wang, W. Lu, T. Yu, and Y. Zhang, “Enhanced Photoactivity of V-N Codoped TiO2 Derived from a Two-Step Hydrothermal Procedure for the Degradation of PCP-Na under Visible Light Irradiation”, J. Phys. Chem. C 115 (2011) 4507-4515.

Mohamed, M. M., M. M. Al-Esaimi, “Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: Degradation of methylene blue dye”, J. Mol. Catal. A: Chem. 255 (2006) 53-61.

Nakashima, T., Y.Ohko, Y. Kubota, A. Fujishima, “Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets”, J. Photochem. Photobiol. A: Chem. 160 (2003) 115-120.

Ne?i?, J., D. D. Manojlovi?, I. An?elkovi?, B. P. Doj?inovi?, P. J. Vuli?, J. Krsti?, G. M. Rogli?, “Preparation, characterization and photocatalytic activity of lanthanum and vanadium co-doped mesoporous TiO2 for azo-dye degradation”, J. Mol. Catal. A: Chem 378 (2013) 67-75.

Ngaotrakanwiwat, P., T. Tatsuma, “Optimization of energy storage TiO2–WO3 photocatalysts and further modification with phosphotungstic acid”, J. Electroanalyt. Chem. 573 (2004) 263-269.

Ohko, Y., S. Saitoh, T. Tatsuma, A. Fujishima, “Photoelectrochemical Anticorrosion and Self-Cleaning Effects of a TiO2 Coating for Type 304 Stainless Steel”, J. Electrochem. Soc. 148 (2001) B24-B28.

Ozaki, H., S. Iwamoto, and M. Inoue, “Effect of the addition of a small amount of vanadium on the photocatalytic activities of N- and Si- co-doped titanias under visible-light irradiation”, Catalysis Letters 113 (2007) 95-98.

Patel, N., R. Jaiswal, T. Warang, G. Scarduelli, Alpa Dashora, B. L. Ahuja, D.C. Kothari, and A. Miotello, “Efficient photocatalytic degradation of organic water pollutants using V–N-codoped TiO2 thin films”, Appl. Catal. B. Environ. 150-151 (2014) 74-81.

Peng, L. P., L. Xu, and Z. C. Xia, “Study the high photocatalytic activity of vanadium and phosphorous co-doped TiO2 from experiment and DFT calculations”, Computational Materials Science 83 (2014) 309-317.

Pichat, P., J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler, C. Gaysee, “Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis”, Catal. Today 63 (2000) 363-369.

Sasirekha, N., B. Rajesh, and Y. W. Chen, “Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent”, Thin Solid Films 518 (2009) 43-48.

Sun, M.M., Z.Y. Chen, J.Q. Yu, “Highly efficient visible light induced photoelectrochemical anticorrosion for 304 SS by Ni-doped TiO2”, Electrochemica Acta 109 (2013) 13-19.

Takata, Y., S. Hidaka, J. M. Cao, T. Nakamura, H. Yamamoto, M. Masada, T. Ito, “Effect of surface wettability on boiling and evaporation”, Energy 30 (2005) 209-220.

Tatsuma, T., S. Saitoh, Y. Ohko, A. Fujishima, “TiO2?WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability”, Chem. Mater. 13 (2001) 2838-2842.

Teh, C. M., A. R. Mohamed, “Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review”, J. Alloys Compd. 509 (2011) 1648-1660.

Tian, B., C. Li, F. Gu, H. Jiang, Y. Hu, and J. Zhang, “Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible ligjt irradiation”, Chemical Engineering Journal 151 (2009) 220-227.

Wang, Y., D.J. Doren, “Electronic structures of V-doped anatase TiO2”, Solid State Communications 136 (2005) 142-146.

Watanabe, T., A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, “Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass”, Thin Solid Films 351 (1999) 260-263.

Yang, X., C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal, and K. Klabunde, “ Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde”, Journal of Catalysis 252 (2007) 296-302.

Zhang, D. R., H. L. Liu, S. Y. Han, and W. X. Piao, “Synthesis of Sc and V-doped TiO2 nanoparticles and photodegradation of rhodamine-B”, J. Ind. Eng. Chem. 19 (2013) 1838-1844.

Zhang, X. T., O. Sato, M. Taguchi, Y. Elinaga, T. Murakami, A. Fujishima, “Self-cleaning particle coating with antireflection properties”, Chem. Mater. 17 (2005) 696-700.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2014-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明