博碩士論文 962411005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:3.138.105.124
姓名 李興中(Hsin-Chung Lee)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱
(Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型
★ 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法
★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法★ 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台
★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究★ 基因體功能統合分析在阿茲海默症和大腦老化-近年阿茲海默症研發藥物失敗的理論問題探討
★ 運用時間序列微陣列資料來預測調控基因★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型
★ 一種找尋再利用藥物複合物來系統性治療複雜疾病的架構:大腸直腸腺瘤的應用★ 以上皮細胞間質化與增生相關功能來描述癌症幹細胞之基因型
★ 從共表達差異基因對導出正常腦老化及因阿茲海默症特定腦區導致在功能性基因途徑與樞紐基因子網絡之變化★ 以疾病進展趨勢挑選基因法識別正常腦老化與阿爾茨海默氏症在特定腦區引發的關鍵功能路徑與調節路徑之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 腫瘤細胞裡包含了一小群亞型的腫瘤起始細胞被稱為癌症幹細胞,這群細胞可以自我更新以及具備增生的能力。癌症幹細胞被廣泛認為不是一種典型的癌症細胞,會以不同的族群持續的存在腫瘤裡,導致復發以及轉移而生成新的腫瘤。在1997年的一個研究中癌症幹細胞首次被證實出來,有一亞型的白血球細胞會特別表現一個細胞表面標記CD34但不會表現CD38的標記,因此而建立了CD34+/CD38-的亞群,且這一亞群癌細胞可在免疫缺陷的老鼠裡引發腫瘤。其腫瘤細胞在組織學上亦與最原先的白血球細胞非常相似。
曾有研究提過癌症幹細胞在大腸癌裡可驅使腫瘤的生成,這一假說質疑了現有的抗癌藥物療效因為現有的抗癌藥物只針對癌細胞毒殺,並且容易使細胞產生抗藥性,而這些抗藥性的細胞通常都被認為是癌症幹細胞。如能分離出這些癌症幹細胞以及去瞭解其特性就可開發新穎的診斷及治療的步驟。
CD133已被證實為大腸癌幹細胞特有的細胞表面標記,因此有研究利用CD133分離出大腸癌裡的癌症幹細胞。當細胞表面標記CD133+的癌幹細胞注入免疫缺乏老鼠的皮下時,這一群的細胞很容易就生成新的腫瘤,而細胞表面標記CD133-的細胞則否。但這發現是有爭議性的。
為了探討CD133的表態,利用建立的lacZ基因崁入小鼠(CD133lacZ/+)驅使lacZ受內生性的CD133 ?動子表現,發現CD133的表態不只是僅限於大腸癌裡的癌幹細胞,CD133也表現於已分化的大腸上皮細胞。如此只針對CD133表態分離出大腸癌裡所有的幹細胞是有爭議的,因為不是所有的癌幹細胞都有CD133表態。不管是CD133+或是CD133-的細胞注入免疫缺乏的老鼠裡皆可產生新的腫瘤。
除了CD133,另外有被發現的大腸癌幹細胞表面標記有上皮特定抗原(EpCAM, BerEp4; 細胞粘附分子), CD44 (CDW44;細胞粘附分子;玻尿酸接受體), CD166 (ALCAM;細胞粘附分子), Msi-1 (Musashi-1; RNA結合蛋白), CD29 (組合蛋白beta1;細胞粘合分子), CD24 (HAS;細胞粘合分子), Lgr5 (GPR49;Wnt 標靶基因)以及ALDH-1 (ALDC;酵素)。無論如何,確定的大腸癌幹細胞的表面標記並未完全被認定。近期的實驗技術裡,如要有效地分離出癌症幹細胞仍需靠動物模式觀察新的腫瘤的生成。
癌症幹細胞會表態ABC運輸蛋白家族是普遍的被接受,譬如ABCG2蛋白(multidrug-resistant transporter 1 與 ABC sub-family G member 2),而這些蛋白賦予腫瘤細胞抗藥的能力。在人類的大腸癌腫瘤中有抗藥性的細胞亦可以產生遠高於正常的癌症胚胎抗原(CEA)。我們發現當加了阿斯匹靈的培養基與沒有加的培養基相比時,含阿斯匹靈培養基中只有1% 的細胞會存活。指出了,培養基加入抗癌藥物後產生抗藥的大腸癌細胞有可能是大腸癌幹細胞, 或許是一種分離大腸癌幹細胞的方法。
在這文章中,我們將會探討培養在無血清或有血清的培養基中的大腸癌LoVo細胞其所分泌的CEA是否會被加入的抗癌藥物所影響。利用流式細胞儀以及細胞免疫染色分離,檢驗這些抗藥性的大腸癌LoVo細胞是否具有癌幹細胞的特徵如細胞較小,癌症次球體(colonosphere)的產生以及表現大腸癌幹細胞特有的表面標記)。最後,在體內實驗裡,我們會將這些有抗藥的大腸癌LoVo細胞注入免疫缺乏小鼠的皮下後再觀察新腫瘤的生成。
不管是在沒有血清或有血清的培養基裡,大腸癌LoVo細胞所產出的CEA量可被抗癌藥物以及阿斯匹靈刺激分泌。癌症幹細胞已被相信擁有抗藥的特性,然而在我們小鼠體內的實驗裡這些相信擁有抗藥的特性癌幹細胞並沒有生成的新腫瘤。在臨床上, 有10%的早期大腸癌轉移的病人在接受化癌藥物治療時,CEA 升高(CEA surge或CEA flare)的產生被認為是對治療是有效的。在臨床上我們一佐證了抗癌藥物的癌細胞並不是癌症幹細胞,不是大眾所認為因為癌幹細胞的存在會產生更負面的治療效果。
摘要(英) Tumors contain a small subpopulation of cancer-initiating cells, known as cancer stem cells (CSCs), which exhibit a self-renewing capacity and are responsible for tumor generation. CSCs are reputed not to be typical cancer cells, and they may persist in tumors as a distinct population, causing relapse and metastasis by giving rise to new tumors. The first evidence for CSCs was reported in 1997 in a study that an isolated subpopulation of leukemic cells that expressed a specific surface marker, CD34, but lacked the CD38 marker; established that the CD34+/CD38- subpopulation was capable of initiating tumors in non-obese diabetic/severe combined immunodeficiency (SCID) mice and that these tumors were histologically similar to the primary leukemic tumors.
CSCs can form tumors and it has been suggested that CSCs persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. The hypothesis that stem cells drive tumorigenesis in colon cancer raises the question of whether current anticancer therapies can efficiently target the tumorigenic cell population that is responsible for tumor growth and metastasis since current therapies mostly fail to eradicate CSC clones and instead favor expansion of the CSC pool and/or select for drug-resistant CSC clones. The isolation and characterization of tumorigenic colon CSCs should enable the development of novel diagnostic and therapeutic procedures.
Specific surface markers for colon CSCs have been reported, and CD133 is the most studied surface marker for colon CSCs. Using CD133 to identify and confirm expansion of human colon CSCs has been reported. CD133+ colon cancer cells injected subcutaneously readily generated a tumor in SCID mice, whereas CD133- cells did not form tumors but with controversial results.
Using a knock-in lacZ reporter mouse (CD133lacz/+) in which the expression of lacZ was driven by the endogenous CD133 promoters, CD133 expression in the colon was found not to be restricted to stem cells alone; CD133 was ubiquitously expressed on differentiated colonic epithelia. An examination of CD133 expression did not reveal the entire population of CSCs in human metastatic colon cancer; both CD133+ and CD133- metastatic tumor subpopulations were capable of long-term tumorigenesis in a non-obese diabetic/SCID xenotransplantation model.
Other colon CSC markers have been proposed including epithelial specific antigen (EpCAM, BerEp4; cell adhesion molecule), CD44 (CDW44; cell adhesion molecule, hyaluronic acid receptor), CD166 (ALCAM; cell adhesion molecule), Msi-1 (Musashi-1; RNA-binding protein), CD29 (integrin β1; cell adhesion molecule), CD24 (HSA; cell adhesion molecule), Lgr5 (GPR49; Wnt targeting gene), and ALDH-1 (ALDC; enzyme). Exact and reliable surface markers of colon CSCs, however, have not yet been identified. Presently, the only reliable method for identifying and quantifying CSCs is to observe tumor formation in a serial xenotransplantation model.
It is generally accepted that CSCs express active transmembrane ATP-binding cassette (ABC) transporter family members, such as the multidrug-resistant transporter 1 and ABC sub-family G member 2 (ABCG2),7 which render them drug resistant. Drug-resistant cells from human colorectal adenocarcinoma tumors produced two orders higher than normal levels of carcinoembryonic antigen (CEA) per cell. Only 1% of cells treated with acetylsalicylic acid (aspirin) in their culture medium survived, compared with cells grown in the normal expansion medium. This raised questions about whether the drug-resistant colorectal cells, which are increased by adding anticancer drugs into the culture medium, might be CSCs; if so, this method might be the simplest isolation method for CSCs. It will also be important to determine which anticancer drugs or chemotherapy treatments can efficiently deplete CSCs when colon cancer cells are subcutaneously xenotransplanted into mice after the cells have been treated with anticancer drugs.
In this paper, the higher levels of CEA secreted by the LoVo colon carcinoma cell line, which was cultured in serum-free and serum-containing media containing anticancer drugs will be evaluated. Drug-resistant LoVo cells were analyzed to determine whether those cells had CSC characteristics, e.g., small size of the cells/colonosphere and strong expression of CSC surface markers, as indicated by flow cytometry and immunohistochemistry analysis. Finally, in vivo tumorigenesis was examined by subcutaneously xenotrans- planting the isolated drug-resistant LoVo cells into mice. Drug-resistant cells isolated in this study were CSCs will be evaluated.
In conclusion the production of CEA by LoVo cells can be stimulated by the addition of anticancer drugs as well as aspirin in both serum-free and serum-containing media. CSCs are believed to be drug resistant cells; however, although the drug-resistant subpopulation of LoVo colon cancer cells, which were isolated by the addition of anticancer drugs to the culture medium, could stimulate the production of CEA in both serum-free and serum-containing media, these cells did not act as CSCs in in vivo tumor generation experiments. In the clinic, a CEA surge or flare has been observed as an early biochemical phenomenon in metastatic colorectal cancer during chemotherapy in approximately 10% of the patients who experience a clinical benefit. In light of this clinical evidence, we speculate that drug-resistant can?cer cells are not CSCs because patients with CEA surges experience a clinical benefit, which is inconsistent with the CSC theory that predicts that these patients would have a worse prognosis.
關鍵字(中) ★ 腫廇細胞 關鍵字(英) ★ colon cancer cell
★ drug treatment
★ 5-FU
★ stem cell
★ cd 133
論文目次 中文論文提要………………………………………………………………………………….i
ABSTRACTS…………....………..………………………………………………………..…iv
ACKNOWLEDGEMENTS………..…….………………………………………………….viii
TABLE OF CONTENTS…………………….………………………………………….….…ix
PUBLICATIONS………………………………………………………………………………1
1. Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells………………………………………………………………...1
2. ToP - A trend-of-disease-progression procedure works well for identifying oncogenes from multi-state cohort gene expression data for human colorectal cancer……………14
3. Suppression of cancer-initiating cells and selection of adipose-derived stem cells cultured on biomaterials having specific nanosegments……………………………….28
4. Effect of the surface density of nanosegments immobilized on culture dishes on ex vivo expansion of hematopoietic stem and progenitor cells from umbilical bord Blood…...43
5. An all-statistics, high-speed algorithm for the analysis of copy number variation in genomes…..……………………………………………………………………………54
6. Molecular markers in colorectal cancer…………………………………………………62
7. A Pairwise-Gaussian-merging approach towards genome segmentation for copy number analysis…………………………………………………………………………………72
參考文獻 1. Trumpp A, Wiestler OD. Mechanisms of disease: cancer stem cells –
targeting the evil twin. Nat Clin Pract Oncol. 2008;5(6):337–347.
2. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a
hierarchy that originates from a primitive hematopoietic cell. Nat Med.
1997;3(7):730–737.
3. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates
of the cancer incidence and mortality in Europe in 2006. Ann Oncol.
2007;18(3):581–592.
4. Ricci-Vitiani L, Fabrizi E, Palio E, De Maria R. Colon cancer stem
cells. J Mol Med (Berl). 2009;87(11):1097–1104.
5. Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem
cells: promise of targeted therapy. Gastroenterology. 2010;138(6):
2151–2162.
6. Papailiou J, Bramis KJ, Gazouli M, Theodoropoulos G. Stem cells in
colon cancer. A new era in cancer theory begins. Int J Colorectal Dis.
2011;26(1):1–11.
7. Klonisch T, Wiechec E, Hombach-Klonisch S, et al. Cancer stem cell
markers in common cancers – therapeutic implications. Trends Mol
Med. 2008;14(10):450–460.
8. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and
expansion of human colon-cancer-initiating cells. Nature. 2007;
445(7123):111–115.
9. Vermeulen L, Todaro M, de Sousa Mello F, et al. Single-cell cloning of
colon cancer stem cells reveals a multi-lineage differentiation capacity.
Proc Natl Acad Sci U S A. 2008;105(36):13427–13432.
10. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell
capable of initiating tumour growth in immunodeficient mice. Nature.
2007;445(7123):106–110.
11. Ferrand A, Sandrin MS, Shulkes A, Baldwin GS. Expression of gastrin
precursors by CD133-positive colorectal cancer cells is crucial for
tumour growth. Biochim Biophys Acta. 2009;1793(3):477–488.
12. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain
tumour initiating cells. Nature. 2004;432(7015):396–401.
13. Hilbe W, Dirnhofer S, Oberwasserlechner F, et al. CD133 positive
endothelial progenitor cells contribute to the tumour vasculature in
non-small cell lung cancer. J Clin Pathol. 2004;57(9):965–969.
14. Shmelkov SV, Butler JM, Hooper AT, et al. CD133 expression is not
restricted to stem cells, and both CD133+ and CD133– metastatic colon
cancer cells initiate tumors. J Clin Invest. 2008;118(6):2111–2120.
15. Lugli A, Iezzi G, Hostettler I, et al. Prognostic impact of the expression
of putative cancer stem cell markers CD133, CD166, CD44 s, EpCAM,
and ALDH1 in colorectal cancer. Br J Cancer. 2010;103(3):382–390.
16. Horst D, Kriegl L, Engel J, Kirchner T, Jung A. CD133 expression is
an independent prognostic marker for low survival in colorectal cancer.
Br J Cancer. 2008;99(8):1285–1289.
17. Du L, Rao G, Wang H, et al. CD44-positive cancer stem cells expressing
cellular prion protein contribute to metastatic capacity in colorectal
cancer. Cancer Res. 2013;73(8):2682–2694.
18. Li CY, Li BX, Liang Y, et al. Higher percentage of CD133+ cells is
associated with poor prognosis in colon carcinoma patients with stage
IIIB. J Transl Med. 2009;7:56–63.
19. Crea F, Fornaro L, Masi G, Falcone A, Danesi R, Farrar W. Faithful
markers of circulating cancer stem cells: is CD133 sufficient for validation
in clinics? J Clin Oncol. 2011;29(25):3487–3488.
20. Chu P, Clanton DJ, Snipas TS, et al. Characterization of a subpopulation
of colon cancer cells with stem cell-like properties. Int J Cancer.
2009;124(6):1312–1321.
21. LaBarge MA, Bissell MJ. Is CD133 a marker of metastatic colon cancer
stem cells? J Clin Invest. 2008;118(6):2021–2024.
22. Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal
cancer stem cells. Clin Cancer Res. 2008;14(21):6751–6760.
23. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human
colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104(24):
10158–10163.
24. Todaro M, Perez Alea M, Scopelliti A, Medema JP, Stassi G. IL-4-
mediated drug resistance in colon cancer stem cells. Cell Cycle.
2008;7(3):309–313.
25. Huang EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenase 1 is a
marker for normal and malignant human colonic stem cells (SC) and
tracks SC overpopulation during colon tumorigenesis. Cancer Res.
2009;69(8):3382–3389.
26. Lohberger B, Rinner B, Stuendl N, et al. Aldehyde dehydrogenase 1, a
potential marker for cancer stem cells in human sarcoma. PLoS One.
2012;7(8):e43664.
27. Garcia VM, Batlle JF, Casado E, et al. Immunohistochemical analysis
of tumour regression grade for rectal cancer after neoadjuvant
chemoradiotherapy.
Colorectal Dis. 2011;13(9):989–998.
28. Fan LF, Dong WG, Jiang CQ, Xia D, Liao F, Yu QF. Expression of
putative stem cell genes Musashi-1 and beta1-integrin in human colorectal
adenomas and adenocarcinomas. Int J Colorectal Dis. 2010;25(1):
17–23.
29. Fan X, Ouyang N, Teng H, Yao H. Isolation and characterization of
spheroid cells from the HT29 colon cancer cell line. Int J Colorectal
Dis. 2011;26(10):1279–1285.
30. Hellsten R, Johansson M, Dahlman A, Sterner O, Bjartell A.
Galiellalactone
inhibits stem cell-like ALDH-positive prostate cancer
cells. PLoS One. 2011;6(7):e22118.
31. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an
emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):
4741–4751.
32. Higuchi A, Uchiyama S, Demura M, et al. Enhanced CEA production
associated with aspirin in a culture of CW-2 cells on some polymeric
films. Cytotechnology. 1999;31(3):233–242.
33. Zhang J, Li H, Wang X, et al. Phage-derived fully human antibody
scFv fragment directed against human vascular endothelial growth
factor receptor 2 blocked its interaction with VEGF. Biotechnol Prog.
2012;28(4):981–989.
34. Alfred R, Radford J, Fan J, et al. Ef?cient suspension bioreactor expansion
of murine embryonic stem cells on microcarriers in serum-free
medium. Biotechnol Prog. 2011;27(3):811–823.
35. Higuchi A, Huang SC, Shen PY, et al. Differentiation ability of amniotic
fluid-derived stem cells cultured on extracellular matrix-immobilized
surface. Curr Nanosci. 2011;7(6):893–901.
36. Liu JY, Peng HF, Gopinath S, Tian J, Andreadis ST. Derivation of
functional smooth muscle cells from multipotent human hair follicle
mesenchymal stem cells. Tissue Eng Part A. 2010;16(8):2553–2564.
37. Shi B, Deng L, Shi X, et al. The enhancement of neural stem cell survival
and growth by coculturing with expanded sertoli cells in vitro.
Biotechnol Prog. 2012;28(1):196–205.
38. Mohr JC, de Pablo JJ, Palecek SP. Electroporation of human embryonic
stem cells: small and macromolecule loading and DNA transfection.
Biotechnol Prog. 2006;22(3):825–834.
39. Malpique R, Tostoes R, Beier AFJ, et al. Surface-based cryopreservation
strategies for human embryonic stem cells: a comparative study.
Biotechnol Prog. 2012;28(4):1079–1087.
40. Aquino A, Prete SP, Guadagni F, et al. Effect of 5-fluorouracil on carcinoembryonic
antigen expression and shedding at clonal level in colon
cancer cells. Anticancer Res. 2000;20(5B):3475–3484.
41. Prete SP, Rossi L, Correale PP, et al. Combined effects of protein kinase
inhibitors and 5-fluorouracil on CEA expression in human colon cancer
cells. Pharmacol Res. 2005;52(2):167–173.
42. Yan H, Chen X, Zhang Q, et al. Drug-tolerant cancer cells show reduced
tumor-initiating capacity: depletion of CD44 cells and evidence for
epigenetic mechanisms. PLoS One. 2011;6(9):e24397.
43. Staab HJ, Anderer FA, Brummendorf T, Stumpf E, Fischer R. Prognostic
value of preoperative serum CEA level compared to clinical staging. I.
colorectal carcinoma. Br J Cancer. 1981;44(5):652–662.
44. Wolmark N, Fisher B, Wieand HS, et al. The prognostic significance
of preoperative carcinoembryonic antigen levels in colorectal cancer.
Results from NSABP (National Surgical Adjuvant Breast and Bowel
Project) clinical trials. Ann Surg. 1984;199(4):375–382.
45. Ailawadhi S, Sunga A, Rajput A, Yang GY, Smith J, Fakih M.
Chemotherapy-
induced carcinoembryonic antigen surge in patients
with metastatic colorectal cancer. Oncology. 2006;70(1):49–53.
46. Fakih MG, Padmanabhan A. CEA monitoring in colorectal cancer. What
you should know. Oncology (Williston Park). 2006;20(6):579–587.
47. Sorbye H, Dahl O. Carcinoembryonic antigen surge in metastatic
colorectal cancer patients responding to oxaliplatin combination chemotherapy:
implications for tumor marker monitoring and guidelines.
J Clin Oncol. 2003;21(23):4466–4467.
指導教授 李弘謙、樋口亞紺(Hoong-Chein Lee Akon Higuchi) 審核日期 2014-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明