博碩士論文 952203052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:3.133.153.61
姓名 陳育萱(Yu-Hsuan Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 二氧化鈦奈米管複合高分子固態電解質之染料敏化太陽能電池
(Binary (Poly(vinylidenefluoride-co- hexafluoropropylene)/ titanium oxide nanotube Solid-State Redox Electrolyte for Dye-sensitized solar cells)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 染料敏化太陽能電池之固態電解質有助於發展穩定性高的電池元件,用以改善液態電解質容易揮發洩液及無法大面積使用等缺點
。在本研究中主要利用聚二氟乙烯-六氟丙烯共聚高分子(PVdF-HFP
)與二氧化鈦奈米管(Titanium oxide -nanotube)摻合製備高分子固態氧化還原對電解質,其複合高分子電解質薄膜所測量出的離子導電度優於文獻上所報導的高分子電解質薄膜導電度甚至趨近於液態電解質導電度。
二氧化鈦奈米管的添加有助於鹽類 LiI 的解離,因為 Li+ 與 TiNT 結構表面之間有作用力,會以 Lithium Anatase 或 Lithium Titanate 形式存在。由 DSC、AC-impedance 研究結果顯示,TiNT 的添加可以阻礙 I2 的結晶,幫助鹽類解離,形成離子複合物(Li+
/I3-)及可移動的離子(I-/I3-)。當高含量 TiNT 引入電解質時,解離的離子可能會 trap 在其結構上,限制離子移動而降低離子導電度, 最佳的 TiNT 添加量為重量比3 (w/w)。在SEM 的表面型態觀察上,可看見薄膜中有機/無機物均勻混合,無相分離現象產
生,而高分子 PVdF-HFP 的多孔性結構則有助於幫助保存離子液體與微量有機溶劑。
在本研究電解質系統,高分子 PVdF-HFP 與 TiNT 分別與鹽類都有作用力存在,因而降低 PVdF-HFP 的結晶度,使非結晶區域增加。高分子在電解質中提供一個流暢的路徑,使氧化還原對(I-/I3
-)能沿著具方向性的二
氧化鈦奈米管表面進行 ion exchange mechanism,在未使用液態電解質的情況下能提升離子導度。PVdF-HFP / LiI / I2 / TiNT 電解質比例為2:8:1:3 時,離子導電度可高達6.28× 10-2 S/cm。在電池元件部分,電解質比例為0:8:1:3時,光電轉換效率最高可以達到5.13%。
摘要(英) Solvent free dye sensitized solar cell (DSSC) is a criti-
calstep towards a durable solar cell. In this paper, the solid state redox electrolyte of photoelectronchemical cells base on (Poly(vinylidenefluoride-co-hexafluoropro-
pylene) / Titanium oxide nanotube (TiNT) composite polymer electrolyteconfirmed that a solvent free electrolyte can yield the ion conductivity comparable or surpassing that of
a liquid or gel electrolyte.
In presence of TiNT, LiI salt is fully dissociated due to
the strong lithium association with TiNT in the Lithium Anatase, and Lithium Titanate forms. The complexation structure depends heavily on the degree of dissociation of LiI on the TiO2 substrate surface. Presence of TiNT,induces
large amount of Li+/I3- complex formation, facilitating electron transport by the ion exchange mechanism. This is evident from the reduction of the crystalline I2 in the LiI
/I2/TiNT system by DSC、AC-impedance. While high content of
TiNT that the dissociated ion are not all contributing toward ion conductivity. In presence of TiNT , these ions may be trapped render it less mobile. The best balance between high ionic dissociation and high ion motion is reached at TiNT at 3 part. As evident from SEM micrograph, PVdF-HFP / TiNT become miscible in presence of the salt. The result is the formation of homogeneous and mechanical-
ly tough membrane.
On the other hand, although PVdF-HFP degree of crystallin
-ity is hindered in presence of salt and TiNT, which suggested close interaction of the ionic liquid with the polymer,ionic mobility is not improved solely by PVdF-HFP.
This is commonly accepted to be due to the bulky nature of the anion. However, with the addition of TiNT to form composite with PVdF-HFP,ion pairing (Li+ I3-) is largely suppressed by TiNT and enhanced the dissociation of the I-
/I3- redox couple. Here the PVdF-HFP (now totally amorphous
)polymer provided a fluent path way to mobilize the fully dissociated ionic species along the more directional TiNT surface, thus an elevated ion conductivity can be reached without the use of solvent. The highest ion conductivity of 6.28×10-2 S/cm is detected at the optimized composition of 2:8:1:3 composition. The best photoelectric conversion efficiency(η)of 5.13% under illumination of simulated AM 1.5 (100mWcm-2).
關鍵字(中) ★ 染敏太陽能電池
★ 二氧化鈦奈米管
★ 高分子固態電解質
關鍵字(英) ★ polymer solid el
★ PVdF-HFP
★ titania nano tube(TNT)
論文目次 中文摘要………………………………………………………………i
英文摘要………………………………………………………………ii
目錄……………………………………………………………………iv
圖目錄…………………………………………………………………vii
表目錄…………………………………………………………………xi
第一章 緒論
1-1 前言………………………………………………………………1
1-2 染料敏化太陽能電池……………………………………………2
1-3 研究動機…………………………………………………………11
第二章 文獻回顧
2-1 電解質簡介………………………………………………………13
2-2 液態電解質………………………………………………………14
2-3 膠態電解質………………………………………………………15
2-3-1 離子液體電解質……………………………………………15
2-3-2 Oligomer電解質……………………………………………18
2-3-3 low-molecular-weight gelators電解質……………… 21
2-4 高分子電解質……………………………………………………23
2-4-1 塑化劑電解質………………………………………………24
2-4-2 高分子複合離子液體電解質………………………………26
2-5 有機/無機奈米複合材料……………………………………… 30
2-5-1 有機高分子/無機奈米顆粒複合材料…………………… 30
2-5-2 奈米顆粒修飾………………………………………………34
2-6 導電高分子材料…………………………………………………38
第三章 實驗技術
3-1 二氧化鈦奈米管製備……………………………………………41
3-2 固態高分子電解質薄膜製備……………………………………42
3-2-1 高分子電解質薄膜之製備…………………………………42
3-2-2 二氧化鈦奈米管-氧化還原對固態電解質之製備……… 42
3-2-3 二氧化鈦奈米管複合高分子固態電解質薄膜之製備……43
3-2-4 二氧化鈦奈米管複合高分子(PVdF-HFP/ MPII / I2 / TiNT
)電解質之製備…………………………………………… 44
3-3 薄膜實驗量測與元件封裝………………………………………45
3-4 實驗藥品…………………………………………………………49
第四章 結果與討論
4-1 二氧化鈦奈米管結構之鑑定……………………………………52
4-2 高分子(PVdF-HFP/LiI/I2)電解質…………………………… 55
4-2-1 PVdF-HFP/LiI/I2之結構物性分析……………………… 55
4-2-2 PVdF-HFP/LiI/I2之導電度……………………………… 56
4-3 二氧化鈦奈米管-氧化還原對(TiNT/LiI/I2)電解質…………57
4-3-1 TiNT/LiI/I2 之結構物性分析……………………………57
4-3-2 TiNT/LiI/I2 之導電度……………………………………58
4-4 二氧化鈦奈米管複合高分子(PVdF-HFP/ LiI / I2 / TiNT)電解
質…………………………………………………………………59
4-4-1 PVdF-HFP/ LiI / I2 / TiNT 之結構物性分析…………59
4-4-2 PVdF-HFP/ LiI / I2 / TiNT 之熱穩定性………………61
4-4-3 PVdF-HFP/ LiI / I2 / TiNT 之表面型態分析…………62
4-4-4 PVdF-HFP/ LiI / I2 / TiNT 之導電度…………………67
4-5 二氧化鈦奈米管複合高分子(PVdF-HFP/ MPII / I2 / TiNT)電
解質………………………………………………………………70
4-5-1 PVdF-HFP/ MPII / I2 / TiNT 之表面型態分析……… 71
4-5-2 PVdF-HFP/ MPII / I2 / TiNT 之結構物性分析……… 73
4-5-3 PVdF-HFP/ MPII / I2 / TiNT 之導電度……………… 76
4-6 染料敏化太陽能電池電壓電流之表現…………………………79
第五章 結論………………………………………………………… 88
參考文獻………………………………………………………………91
參考文獻 [1] B. O’Regan ; M Grätzel﹐Nature 1991﹐353﹐737.
[2] Frank Hurd ; Robert Livingston﹐J. Phys. Chem. 1940,
44, 865.
[3] S. Chaberek, A. Shepp ; R. J. Allen﹐J. Phys. Chem.
1965, 69, 641.
[4] S. Chaberek, A. Shepp ; R. J. Allen﹐J. Phys. Chem.
1965, 69, 647.
[5] S. Chaberek, A. Shepp ; R. J. Allen﹐J. Phys. Chem.
1965, 69, 2834.
[6] Kearns et al.﹐J. Am. Chem. Soc. 1967, 89, 5456.
[7] http://www.ndhu.edu.tw/~nano/labtext/Lo_DSSC.pdf
[8] M. Grätzel﹐Nature 2001, 414, 338.
[9] M. Grätzel﹐J. Photochem. and Photobio. A:Chem.
2004, 164, 3.
[10]P. D. Cozzoli﹔R. Comparelli﹔E. Fanizza﹔M. L.
Curri﹔A.Agostiano﹔D. Laub﹐J.Am. Chem. Soc. 2004,
126, 3868
[11]A. Hagfeldt ; M. Grätzel﹐Chem. Rev. 1995, 95, 49.
[12]K. Kalyanasundaram ; M. Grätzel﹐Coord. Chem. Rev.
1998, 177, 347.
[13]M. Grätzel, Current Opinion in Colloid and Interface
Science1999, 4, 314.
[14]Cahen et al.﹐J.Phys.Chem. B 2000, 104, 2053.
[15]A. Fujishima et al.﹐Sol. Energy Mater. Sol. Cells
2004, 81, 197.
[16]Shogo Nakade﹔Yohei Makimoto﹔Wataru Kubo﹔Takayuki
Kitamur﹔Yuji Wada﹔and Shozo Yanagida﹐J. Phys.
Chem. B 2005, 109, 3480.
[17]Kim. S. Finnie﹔John R. Bartlett and James L.
Woolfrey﹐Langmuir 1998, 14, 2744.
[18]C. Bauer﹔G. Boschloo﹔E. Mukhtar﹔A. Hagfeldt﹐J.
Phys.Chem. B 2002, 106,12693.
[19]Sayama K.﹔Sugihara H.﹔Arakawa H.﹐Chem. Mater.
1998, 10, 3825.
[20]U. Bach﹔D. Lupo﹔P. Comte﹔J. E. Moser﹔F.Weissortel
﹔J.Salbeck﹔H. Spreitzer; M. Grätzel﹐Nature 1998,
395, 583.
[21]B. O’Regan ; D. T. Schwartz﹐Chem. Mater. 1998, 10,
1501.
[22]B. O’Regan ; D. T. Schwartz﹐J. Appl. Phys. 1996,
80, 4749.
[23]D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D.
Vangeneugden, R.Kiebooms, D.Vanderzande, F.
Kienberger, H. Schindler, Synth. Met.2002, 125, 279.
[24]U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissortel
, J. Salbeck,H. Spreitzer, M.Grätzel, Nature 1998,395
, 583.
[25]Sugden, S.Wilkins, H., J.Chem.Soc. 1929, 1291.
[26]Wilkes,J.S.Zaworotko,M.J., J.Chem.Soc.Commun.1992,965
[27]Wataru,k.Takayuki,K.Kenji,H.Yuji,W.Shozo,Y,Chem.
Commun.2002, 374.
[28]Hiroyuki Ohno, Masahiro Yoshizawa, Solid State Ionics
2002, 154, 303
[29]M.Grätzel, Chem. Mater. 2003, 15, 1825
[30]M.Grätzel, J. Phys. Chem. B 2003, 107, 48.
[31]P. Wang, S. Zakeeruddin, I. Exnar, M. Grätzel, Chem.
Commun.2002, 2972.
[32]P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M.
Grätzel, J. Am.Chem. Soc. 2003,125, 1166.
[33]Yong Soo Kang, J. Phys. Chem. C 2007, 111, 5222.
[34]Moon-Sung Kang , Chem. Commun. 2005, 889.
[35]Shinji Murai ; Satoshi Mikoshiba, Hiroyasu Sumino ;
Shuzi Hayase, Journal of Photochemistry and
Photobiology A: Chemistry 2002, 148, 33.
[36]W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M.
Hakuri, K.Hanabusa, H. Shirai,Y. Wada, S. Yanagida,
J. Phys. Chem. B 2001, 105, 12809.
[37]W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S.
Yanagida, Chem.Commun. 2002, 374.
[38]W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K.Hanabusa
, Y.Wada, S. Yanagida, J.Phys. Chem. B 2003, 107,4374
[39]Shozo Yanagida , J. Phys. Chem. B 2001, 105, 51.
[40]Hans-Werner Schmidt , J. Mater. Chem., 2006, 16,2978.
[41]LI Weiying , Chinese Science Bulletin 2003, 48,
7646648
[42]Minyu Li , Electrochimica Acta 2007, 52, 4858.
[43]Jihuai Wu , Adv. Funct. Mater. 2007, 17, 2645.
[44]Marco-A. De Paoli , Journal of Photochemistry and
Photobiology A: Chemistry 2006,181, 226.
[45]Vembu Suryanarayanan , Solar Energy Materials & Solar
Cells 2007, 91, 1467.
[46]Vembu Suryanarayanan , CHEM. COMMUN., 2002, 374.
[47]Huen Lee , J. Phys. Chem. B 2005, 109, 38, 17928.
[48]Yokohama ,Journal of Photochemistry and Photobiology
A:Chemistry 2004, 164, 111.
[49]M.Grätzel, J. AM. CHEM. SOC. 2003, 125, 1166.
[50]YANG et al., Chin. J. Chem., 2006, 24, 12.
[51]S.Anandan , Current Applied Physics 2008, 8, 99.
[52]S.R. Scully et al., Synthetic Metals 2004, 144, 291.
[53]P. Wang et al, Journal of Fluorine Chemistry 2004,
125, 1241.
[54]Thomas Stergiopoulos , NANO LETTERS 2002, 2, 11,1259.
[55]Hongwei Han , Adv.Funct.Mater.2005,15, 1940.
[56]Yong SooKang , Chem.Commun,2004, 1662.
[57]Shuzi Hayase , Journal of The Electrochemical
Society 2006, 153, 3 A626.
[58]XIA,Jiang-Bin , Chin. J. Chem., 2004, Vol. 22, No. 7
[59]X. Zhang et al., Journal of Power Sources 2006, 160,
1451.
[60]M.Grätzel , Adv. Funct. Mater. 2007, 17, 3200.
[61]J. Kruger, R. Plass, L. Cevey, M. Piccirelli, M.
Gratzel, U. Bach, Appl. Phys. Lett.2001, 79, 2085.
[62]J. Hagen, W. Schaffrath, P. Otschik, R. Fink, A.
Bacher, H-W.Schmidt, D. Haarer,Synth. Met. 1997, 89,
215.
[63]K.R. Haridas, J. Ostrauskaite, M. Thelakkat, M.Heim,
R. Bilke,D. Haarer, Synth. Met.2001, 121, 1573.
[64]S.A. Haque, T. Park, A.B. Holmes, J.R. Durrant, Chem
. Phys.Chem. 2003, 1, 89.
[65]W.A. Gazotti, A.F. Nogueira, E.M. Girotto,L.Micaroni
, M. Martini,S. das Neves,M.-A. De Paoli, in: H.S.
Nalwa (Ed.), Handbook of Advanced Electronic and
Photonic Materials, vol. 10, Academic Press, San
Diego, 2000 (Chapter 2).
[66]D. Gebeyehu, C.J. Brabec, N.S. Sariciftci, D.
Vangeneugden, R.Kiebooms, D.Vanderzande, F.Kienberger
, H. Schindler, Synth.Mat. 2002, 125, 279.
[67]T.K. Däubler, I. Glowacki, U. Scherf, J. Ulanski, H.-
H. Hörhold,D. Neher, J. Appl.Phys. 1999, 86, 6915.
[68]C.C. Wanser, H.-S. Kim, J.-K. Lee, Opt. Mater.2002,
21, 221.
[69]S. Luzzati, M. Basso, M. Catellani, C.J. Brabec, D.
Gebeyehu, N.S.Sariciftci, Thin Solid Films 2002, 52,
403.
[70]S. Spiekermann, G.P. Smestad, J. Kowalik, L.M.Tolbert
, M. Gratzel,Synth. Metals.2001, 121, 1603.
[71]G.P. Smestad, S. Spiekermann, J. Kowalik, C.D. Grant
, A.M.Schwartzberg, J. Zhang,L.M. Tolbert, E. Moons,
Sol. Energy Mater.Sol. Cells 2003, 76, 85.
[72]T.J. Savenije, J.M. Warman, A. Goossens, Chem. Phys.
Lett. 1998, 287, 148.
[73]P.A. van Hal, M.P.T. Christiaans, M.M. Wienk, J.M.
Kroon, R.A.J.Janssen, J. Phys.Chem. B 1999, 103,4352.
[74]A.F. Nogueira, M.-A. De Paoli, Synth. Met. 1999,
105, 23.
[75]T.J. Savanije, M.J.W. Vermeulen, M.P. De Haas, J.M.
Warman, Sol.EnergyMater. Sol. Cells 2000, 61, 9.
[76]A.C. Arango, L.R. Johnson, V.N. Bliznyuk, Z.
Schlesinger, S.A.Carter, H.-H. Horhold,Adv. Mater.
2000, 12, 1689.
[77]M. Grätzel﹐Nature 2001, 414, 338.
[78]Mingdeng Wei﹔Yoshinari Konishi﹔Haoshen Zhou﹔
Hideki Sugihara andHironori Arakawab﹐J. Electrochem
. Soc. 2006, 153, A1232.
[79]J. Phys. Chem. B, Vol. 103, No. 17, 199
[80]S. Somasundaram ., Electrochimica Acta 2002, 47,2801.
[81]Brian A. Gregg, Coordination Chemistry Reviews 2004,
248, 1215–1224.
[82]呂怡萱,「二氧化鈦奈米管於染料敏化太陽能池之探討」,
國立中央大學,碩士論文,民國95年。
[83]T. Michot, A. Nishimoto, M. Watanabe, Electrochaimica
Acta. 2000,45, 1347.
[84]Wagemaker et al. J. Am. Chem. Soc.2001, 123, 46.
[85]江菁燁,「奈米粒/管二氧化鈦複合高分子電解質之結構探
討」,國立中央大學,碩士論文,民國92年。
[86]F. Boudin, X. Andrieu, C. J. Jehoulet, J. Power
Sources 1999, 81/82,804.
[87]Z.Huo et al. Solar Energy Materials& Solar Cell
2007, 91,1959.
指導教授 諸柏仁(Peter P. Chu) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明