參考文獻 |
Bee, M. (2011). Adaptive importance sampling for simulating copula-based distributions, Insurance: Mathematics and Economics 48, 237–245.
Bucklew, J. A. (2003). Introduction to rare event simulation, New York : Springer.
Carr, D. B., Littlefield, R. J., and Nicholson, W. L., and Littlefield, J. S. (1987). Scatterplot matrix techniques for large N, Journal of Amer. Statist. Assoc. 82, 424–436.
Chen, X., Fan, Y., and Tsyrennikov, V. (2006). Efficient estimation of semiparametric multivariate copula models, Journal of Amer. Statist. Assoc. 101, 1228–1240.
Chiang, M. H., Yueh, M. L., and Hsieh, M. H. (2007). An efficient algorithm for basket default swap valuation, Journal of Derivatives 15(2), 8–19.
Dennis, J.E. Jr and Schnabel, R.B. (1996). Numerical methods for unconstrained optimization and nonlinear equations, Philadelphia: Society for Industrial and Applied Mathematics.
Dobri’c, J. and Schmid, F. (2007). A goodness of fit test for copulas based on Rosenblatts transformation, Computational Statistics add Data Analysis 51, 4633–4642.
Do, K.-A. and Hall., P. (1991). On importance resampling for the bootstrap, Biometrika78(1), 161–167.
Efron, B. and Tibshirani R. J. (1993). An introduction to the bootstrap, London :Chapman & Hall.
Ellis, R. S. (1985). Entropy, Large Deviations, and Statistical Mechanics. New York :Springer.
Embrechts, P. (2009). Copulas: a personal view, Journal of Risk and Insurance 76, 639-650.
Fuh, C. D. and Hu, I. (2004). Efficient importance sampling for events of moderate deviations with applications, Biometrika 91(2), 471–490.
Fuh, C. D., Hu, I., Hsu, Y. H. and Wang, R. H. (2011). Efficient simulation of value at risk with heavy-tailed risk factors, Operations Research 59(6), 1395–1406.
Fuh, C. D., Teng, H. W., and Wang, R. H. (2013). Efficient importance sampling for rare event simulation with applications, Technical Report.
Genest, C. (197). Frank’s family of bivariate distributions, Biometrika 74(3), 549–555.
Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika 82(3), 543–552.
Glasserman, P. (2004). Monte Carlo methods in financial engineering, New York : Springer.
Glasserman, P. and Li, J. (2005). Importance sampling for portfolio credit risk, Management Science 51(11), 1643–1656.
Hofert, M. (2008). Sampling Archimedean copulas, Computational Statistics and Data Analysis 52, 5163-5174.
Huang, J.-J., Lee, K.-J., Liang, H., and Lin W.-F. (2008). Estimating value at risk of portfolio by conditional copula-GARCH method, Insurance: Mathematics and Economics 45, 315-324.
Huang, P., Subramanian, D. and Xu, J. (2010). An importance sampling method for portfolio CVaR estimation with Gaussian copula models, Proceedings of the 2010 Winter Simulation Conference (WSC), 2790-2800.
Joe, H. (1997). Multivariate models and dependence concepts, Chapman and Hall, London.
Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models, Journal of Multivariate Analysis 94, 401–419.
Johns, M. V. (1988). Importance sampling for bootstrap conference intervals, Journal of the American Statistical Association 83, 709–714.
Kroese, D. P. and Rubinstein, R. Y. (2004). The transform likelihood ratio method for rare event simulation with heavy tails, Queueing Systems 46, 317–351.
Li, D. X. (2000). On default correlation: a copula function approach, Journal of Fixed Income 9, 43–54.
Mai, J.-F. and Scherer, M. (2012). Simulating copulas: stochastic models, sampling algorithms and applications, Series in Quantitative Finance, World Scientific.
Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions, Journal of the American Statistical Association,. 83(403), 834–841.
McNeil, A. J., Frey, R., and Embrechts, P. (2005). Quantitative risk management: concepts, techniques, and tools, Princeton, N.J. : Princeton University Press.
Nelsen, R. (2006). An introduction to copulas, Springer-Verlag, New York, second edition.
Rubinstein, R. Y. and Kroese, D. P. (2008). Simulation and the Monte Carlo method, Hoboken, N.J. : Wiley.
Schmid, F., Schmidt, R. (2007). Multivariate extensions of Spearmans rho and related statistics. Statistics Probability Letters 77, 407-416.
Siegmund, D. (1976). Importance sampling in the Monte Carlo study of sequential tests. Annals of Statistics 4, 673-684.
Srinivasan, R. (2002). Importance sampling: applications in communications and detection, Springer.
Tallis, G. M.(1961). Semiparametric Estimation in Copula Models, Journal of the Royal Statistical Society. Series B (Methodological) 23(1), 223-229.
Tsukahara, H.(2005). Semiparametric Estimation in Copula Models, The Canadian Journal of Statistics 33(3), 357-375.
Tsallis, C. and Stariolo, D. A. (1996). Generalized Simulated Annealing, Physica A 233, 395-406.
Xiang, Y., Gubian, S., Suomela, B., and Hoeng, J. (2012). Generalized simulated annealing for efficient global optimization: the GenSA package for R, The R Journal,
Forthcoming. |