博碩士論文 972205016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.145.9.200
姓名 徐慈陽(Tzu-Yang Hsu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Efficient Importance Sampling for Copula Models with Applications)
相關論文
★ SABR模型下使用遠期及選擇權資料的參數估計★ Structure learning for hierarchical Archimedean copulas
★ 台灣指數上的股價報酬預測性★ 台灣股票在alpha-TEV frontier上的投資組合探討與推廣
★ Sensitivity analysis of credit derivatives★ On Jump Risk of Liquidation in Limit Order Book
★ Asset Allocation Based on the Black-Litterman and GARCH Models★ 在 Black-Sholes 模型下運用選擇權資料進行動態避險之比較
★ 結構型商品之創新、評價與分析★ 具有厚尾殘差下 有效地可預測性檢定
★ A Dynamic Rebalancing Strategy for Portfolio Allocation★ A Multivariate Markov Switching Model for Portfolio Optimization
★ 漸進最佳變點偵測在金融科技網路安全之分析★ Reducing forecasting error under hidden markov model by recurrent neural networks
★ Empirical Evidences for Correlated Defaults★ 金融市場結構轉換次數的偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇研究是針對在copula 模型之下,提出一種有效率的重點抽樣演算法,使得罕見事件的模擬可以得到改善。其最佳機率測度的尋找方式為:固定在一個參數化的指數傾斜性家族,接而最小化蒙地卡羅估計的變異數而得之。由於copula 模型是由一個copula 函數和單維度的邊際累積分配函數構成,具有較為複雜的形式,其動差生成函數計算上較為困難,因此,我們先行應用轉換概似函數 (TLR) 方法使其得到另一個指數傾斜性家族,接著在這個新的指數傾斜性家族找最佳機率測度的解。本研究方法具有普遍性,可應用在許多copula 模型。為了描述本研究方法的廣大應用性,本篇研究有幾個應用:第一,使用拔靴法估計信賴區間的應用;第二,信用風險管理上,其優先損失的計算。由模擬結果可得,本研究方法相對於一般蒙地卡羅方法,變異數減少的量很大,具有顯著的效率性。
摘要(英) In this thesis, we propose an efficient importance sampling algorithm for rare event simulation under copula models. The derived optimal probability is based on the criterion of minimizing the variance of the Monte Carlo estimator within a parametric exponential tilting family. Since copula model is defined on a copula function for one-dimensional marginal cumulative distribution functions of a random vector, and its moment generating function is not easy to get, we apply the transform likelihood ratio (TLR) method to have an alternative exponential tilting family first. And then obtain a simple and explicit expression of the optimal alternative distribution under this transformed exponential tilting family. The importance sampling framework we propose is quite general and can be implemented for many classes of copula models from which sampling is feasible. To illustrate the broad applicability of our method, we study bootstrap confidence intervals for multivariate distributions based on copula models, to which substantial variance reduction was obtained in comparison to standard Monte Carlo estimators.
關鍵字(中) ★ Copula
★ 重點抽樣
★ 模擬
★ 拔靴法
關鍵字(英) ★ Copula
★ importance sampling
★ simulation
★ bootstrap
論文目次 Contents
1 Introduction 1
1.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Preliminaries for Copulas 4
2.1 Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Simulation methods for copulas . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Conditional Inverse Method . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 A Simulation Method for Elliptical Copulas . . . . . . . . . . . . . . 6
2.2.3 Marshal-Olkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Full Maximum Likelihood Estimation [FML] . . . . . . . . . . . . . . 8
2.3.2 Inference Function for Margins [IFM] . . . . . . . . . . . . . . . . . . 8
2.3.3 Canonical Maximum Likelihood [CML] . . . . . . . . . . . . . . . . . 9
3 Methodology 10
3.1 Importance Sampling Method . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 The Transform Likelihood Ratio Method . . . . . . . . . . . . . . . . . . . . 13
3.3 Importance Sampling with Transform Likelihood Ratio Method . . . . . . . 15
3.4 Importance Sampling for Copula Models . . . . . . . . . . . . . . . . . . . . 18
3.4.1 Importance Sampling for General Copula . . . . . . . . . . . . . . . . 19
3.4.2 Importance Sampling for Elliptical Copula . . . . . . . . . . . . . . . 20
3.4.3 Importance Sampling for Archimedean Copula . . . . . . . . . . . . . 24
4 Simulation Study 26
Applications 35
5.1 Importance Resampling for Bootstrap Confidence Intervals of the Dependence
Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.1 Bootstrap Confidence Intervals for the Dependence Parameter in Copula 37
5.1.2 A Real Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6 Conclusion and Furture Work 41
Appendix 1 41
Appendix 2 44
Bibliography 48
參考文獻 Bee, M. (2011). Adaptive importance sampling for simulating copula-based distributions, Insurance: Mathematics and Economics 48, 237–245.
Bucklew, J. A. (2003). Introduction to rare event simulation, New York : Springer.
Carr, D. B., Littlefield, R. J., and Nicholson, W. L., and Littlefield, J. S. (1987). Scatterplot matrix techniques for large N, Journal of Amer. Statist. Assoc. 82, 424–436.
Chen, X., Fan, Y., and Tsyrennikov, V. (2006). Efficient estimation of semiparametric multivariate copula models, Journal of Amer. Statist. Assoc. 101, 1228–1240.
Chiang, M. H., Yueh, M. L., and Hsieh, M. H. (2007). An efficient algorithm for basket default swap valuation, Journal of Derivatives 15(2), 8–19.
Dennis, J.E. Jr and Schnabel, R.B. (1996). Numerical methods for unconstrained optimization and nonlinear equations, Philadelphia: Society for Industrial and Applied Mathematics.
Dobri’c, J. and Schmid, F. (2007). A goodness of fit test for copulas based on Rosenblatts transformation, Computational Statistics add Data Analysis 51, 4633–4642.
Do, K.-A. and Hall., P. (1991). On importance resampling for the bootstrap, Biometrika78(1), 161–167.
Efron, B. and Tibshirani R. J. (1993). An introduction to the bootstrap, London :Chapman & Hall.
Ellis, R. S. (1985). Entropy, Large Deviations, and Statistical Mechanics. New York :Springer.
Embrechts, P. (2009). Copulas: a personal view, Journal of Risk and Insurance 76, 639-650.
Fuh, C. D. and Hu, I. (2004). Efficient importance sampling for events of moderate deviations with applications, Biometrika 91(2), 471–490.
Fuh, C. D., Hu, I., Hsu, Y. H. and Wang, R. H. (2011). Efficient simulation of value at risk with heavy-tailed risk factors, Operations Research 59(6), 1395–1406.
Fuh, C. D., Teng, H. W., and Wang, R. H. (2013). Efficient importance sampling for rare event simulation with applications, Technical Report.
Genest, C. (197). Frank’s family of bivariate distributions, Biometrika 74(3), 549–555.
Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika 82(3), 543–552.
Glasserman, P. (2004). Monte Carlo methods in financial engineering, New York : Springer.
Glasserman, P. and Li, J. (2005). Importance sampling for portfolio credit risk, Management Science 51(11), 1643–1656.
Hofert, M. (2008). Sampling Archimedean copulas, Computational Statistics and Data Analysis 52, 5163-5174.
Huang, J.-J., Lee, K.-J., Liang, H., and Lin W.-F. (2008). Estimating value at risk of portfolio by conditional copula-GARCH method, Insurance: Mathematics and Economics 45, 315-324.
Huang, P., Subramanian, D. and Xu, J. (2010). An importance sampling method for portfolio CVaR estimation with Gaussian copula models, Proceedings of the 2010 Winter Simulation Conference (WSC), 2790-2800.
Joe, H. (1997). Multivariate models and dependence concepts, Chapman and Hall, London.
Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models, Journal of Multivariate Analysis 94, 401–419.
Johns, M. V. (1988). Importance sampling for bootstrap conference intervals, Journal of the American Statistical Association 83, 709–714.
Kroese, D. P. and Rubinstein, R. Y. (2004). The transform likelihood ratio method for rare event simulation with heavy tails, Queueing Systems 46, 317–351.
Li, D. X. (2000). On default correlation: a copula function approach, Journal of Fixed Income 9, 43–54.
Mai, J.-F. and Scherer, M. (2012). Simulating copulas: stochastic models, sampling algorithms and applications, Series in Quantitative Finance, World Scientific.
Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions, Journal of the American Statistical Association,. 83(403), 834–841.
McNeil, A. J., Frey, R., and Embrechts, P. (2005). Quantitative risk management: concepts, techniques, and tools, Princeton, N.J. : Princeton University Press.
Nelsen, R. (2006). An introduction to copulas, Springer-Verlag, New York, second edition.
Rubinstein, R. Y. and Kroese, D. P. (2008). Simulation and the Monte Carlo method, Hoboken, N.J. : Wiley.
Schmid, F., Schmidt, R. (2007). Multivariate extensions of Spearmans rho and related statistics. Statistics Probability Letters 77, 407-416.
Siegmund, D. (1976). Importance sampling in the Monte Carlo study of sequential tests. Annals of Statistics 4, 673-684.
Srinivasan, R. (2002). Importance sampling: applications in communications and detection, Springer.
Tallis, G. M.(1961). Semiparametric Estimation in Copula Models, Journal of the Royal Statistical Society. Series B (Methodological) 23(1), 223-229.
Tsukahara, H.(2005). Semiparametric Estimation in Copula Models, The Canadian Journal of Statistics 33(3), 357-375.
Tsallis, C. and Stariolo, D. A. (1996). Generalized Simulated Annealing, Physica A 233, 395-406.
Xiang, Y., Gubian, S., Suomela, B., and Hoeng, J. (2012). Generalized simulated annealing for efficient global optimization: the GenSA package for R, The R Journal,
Forthcoming.
指導教授 傅承德、鄧惠文
(Cheng-der Fuh、Huei-wen Teng)
審核日期 2014-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明