博碩士論文 952203056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.216.91.156
姓名 李亮儀(Liang-Yi Li)  查詢紙本館藏   畢業系所 化學學系
論文名稱 奈米管複合高分子中高溫質子交換膜
(Sulfonated Titanium Oxide Nanotube Composite for High Temperature Proton Exchange Membrane Fuel Cell (PEMFC))
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 質子交換膜燃料電池在高溫操作下可以降低CO 毒化陽極觸媒,提高電化學反應速率…等優點,但是由於目前商業化的 Nafion 薄膜在高溫操作下,質子傳遞所賴以依附的水分子容易流失,造成導電度急速下降,因此在薄膜中添加入一些保水性無機奈米粒子,可以使薄膜在高溫下仍可保存水分,因此可以維持較高的導電度,以獲得較好的發電效能,甚至在低濕度的環境操作下也會比單純使用 Nafion 薄膜所組成的燃料電池的效能還要好。本研究中使用管狀結構的二氧化鈦奈米管,並於其表面修飾磺酸官能基,帶有磺酸官能基的二氧化鈦奈米管(sTNT)具有良好的保水性質,將之摻入sPEEK 高分子中,形成有機/無機複合薄膜,此質子交換膜具有極
佳的相容性,突破了傳統有機/無機混合物的不均勻性及相分離問題。另一方面,磺酸化二氧化鈦奈米管的管狀結構及無機物表面磺酸根的親水性,而且無機物上的磺酸根與高分子上的磺酸根產生的交互作用力,使水分子在有機/無機的界面間產生較強的鍵結,此結果使薄膜在高溫下更展現出極佳的保水性而使導電度得以維持,特別是分散性較好的 5wt%sTNT/sPEEK 複合薄膜,其導電度在100oC、60%RH 的環境下仍有10-2 S/cm的導電度。
在實驗中也發現 sTNT 的磺酸化程度與薄膜的導電度並未呈現正比關係,含 05sTNT ( IEC = 1.4mmol/g ) 薄膜組成具有較高的導電度,但是含較高磺酸化程度的08sTNT ( IEC = 1.68mmol/g ) 薄膜,其導電度卻比較低磺酸化程度的05sTNT/ sPEEK 薄膜低,此結果顯示,無機物的磺酸根與sPEEK 的磺酸根之間的分佈會產生不同的微結構型態,進而影響水分脫附的程度,改變導電度行為。
摘要(英) Numerous advantages are identified in operating fuel cell at elevated temperature, which include better tolerance towards CO poisoning, higher electro-chemical kinetics, and promising of higher output power. However, the output power of PEMFC using state of art proton exchange membrane is dramatically reduced due to increase of internal resistance from the loss of water from these membranes as the temperature increases to above 80C. Currently the proton conduction of the perfluorosulfonic acid ( PFSA , such as Nafion ) membranes rely on water for proton transport. Water evaporation means a dramatic decrease of proton conductivity and, consequently loss of fuel cell performance. Developing new proton exchange membrane suitable for PEM fuel cells (PEMFC) to operate at temperatures above 150 °C becomes the new challenge in this field which is critical for the future of fuel cell technology.
Present study examines the effect of sulfonated poly aryl ether ketones (sPAEK)s composited with sulfonated inorganic nanoparticle for high temperature purpose. Sulfonated titanium oxide nanotube (sTNT) displayed excellent water retention capability which preserved certain amount of water in temperature higher than the normal boiling temperature. As a result, composite membrane delivered impressive conductivity surpassing sPAEK membranes without using the nano-composite and other membranes operating at low humidity conditions or at elevated temperature above 110 C. These nanocomposite proton exchange membranes were prepared from sulfonated poly(ether ether ketone) (sPEEK) and physically blended with various amounts of sulfonated titanium oxide nanotube (sTNT) using common solvent. Fucntions of the inorganic moiety are two folds, first it improves thermal stability and provided tougher strength at elevated temperature. Secondly, it shows residual water content even above 140C, which facilitate proton transport. From low moisture content (R.H.=20%) to saturated moisture (RH=100%) conditions, proton conductivity of the membrane containing sTNT is higher than pristine sPEEK. This is especially the case with 5wt% sTNT composite, where the most homogeneous morphology (best inorganic dispersion) is observed. For 5wt% sTNT/sPEEK composite membrane the porton conductity reached above 10-2 S/cm at 100oC, 60%RH. These membranes display excellent proton conductivity when temperature is higher than 100oC, and continue to increase with increasing temperature while other membranes either lost the proton conductivity or yield to severe swelling and loss of membrane strength under elevated temperature. A unique proton conducting behavior is also identified in these composite membranes where proton migration along the tubular inorganic surface is assisted with the presence of a small amount of water retained in the tube.
Since the IEC ( ion exchange capacity ) content of these membranes depend on the degree of sulfonation on both the sPEEK and on sTNT, it is important to find out if increasing the degree of sulfonation on TNT surface would improved the conductivity further. This is easy to do, since the degree of sulfonation on the TNT surface can be controlled by varying the amount of sultone. The results shows, in spite of the higher IEC value, the membrane using TNT with higher degree of sulfonation (0.8sTNT. IEC = 1.68mmol/g) delivered worse proton conducting behavior than that from lower degree of sulfonation (0.5sTNT, IEC = 1.4mmol/g). These results suggested the proton conductivity does not depend on IEC alone, but the membrane morphology with well connected conducting channel and suitable distribution of sulfunated group within the membrane are also important factors in contribution towards proton conductivity.
These membranes are promising as high temperature PEM fuel cell materials. The feasibility is demonstrated by fuel cell performance operating under temperature above 120C.
關鍵字(中) ★ 質子交換膜燃料電池
★ 磺酸化二氧化鈦奈米管
★ 磺酸化聚二醚酮
關鍵字(英) ★ sTNT
★ proton exchange membrane fuel cell
★ sPEEK
論文目次 中文摘要…………………………………………………………………..i
英文摘要………………………………………………………………..ii
目錄………………………………………………………………………v
表目錄..……………………………………………………………..viii
圖目錄......………………………………………………………………...ix
第一章 緒論
1-1前言………………………………………………………………………...1
1-2研究動機…………………………………………………………………...2
第二章 高溫電解質薄膜文獻回顧
2-1 Nafion薄膜的修飾 ……………………………………………………..5
2-1-1 添加替代水分子以協助質子傳遞的化合物...................................5
2-1-2 添加親水性的無機氧化物...............................................................7
2-1-3 添加質子導體無機物......................................................................8
2-2 碳氫 (芳香環)高分子薄膜 ...................................................................13
2-3 有機/無機複合高分子薄膜 ...................................................................18
2¬-4 酸/鹼高分子複合薄膜.............................................................................24
2-4-1 酸性高分子/鹼性小分子................................................................25
2-4-2 鹼性高分子/酸性小分子................................................................27
2-4-3 酸性高分子/鹼性高分子................................................................28
第三章 實驗技術
3-1 樣品製備
3-1-1 二氧化鈦奈米管的合成 ………………………………………...30
3-1-2 二氧化鈦奈米管表面磺酸化修飾…………………………….....30
3-1-3 磺酸化聚二醚酮( sPEEK )高分子……………………………….31
3-1-4 有機/無機複合薄膜之製備………………………………………32
3-2 實驗量測與樣品前處理步驟
3-2-1 保水性量測…………………………………………………….....32
3-2-2 溶劑吸附量(solvent uptake)…………………………………..32
3-2-3 甲醇滲透率…………………………………………………….....33
3-2-4 離子交換容量(Ion Exchange Capacity , IEC)…………………34
3-2-5 質子導電度…………………………………………………….....34
3-3 實驗藥品………………………………………………………………37
第四章 結果與討論
4-1 磺酸化二氧化鈦奈米管(sTNT)
4-1-1 傅立葉紅外線光譜(FT-IR)分析…………………………………40
4-1-2 X光繞射儀(XRD)分析………………………………………….40
4-1-3 穿透式電子顯微鏡(TEM)與掃描式電子顯微鏡(SEM)分析…42
4-1-4 熱重損失分析 ( TGA ) ………………………………………….44
4-1-5 保水性分析……………………………………………………….46
4-2 不同含量磺酸化二氧化鈦奈米管( sTNT ) /磺酸化聚二醚酮(sPEEK)複合薄膜
4-2-1薄膜影像以及掃描式電子顯微鏡(SEM)分析………………….48
4-2-2 熱重損失分析( TGA )…………………………………………...48
4-2-3 保水性分析……………………………………………………….51
4-2-4溶劑吸附量(solvent uptake)以及燃料滲透率
(methanol permeability) 的分析.………………………………………52
4-2-5 質子導電度的分析…………………………………………….....55
4-3 不同磺酸化程度二氧化鈦奈米管(sTNT)/磺酸化聚二
醚酮 ( sPEEK ) 複合薄膜
4-3-1 保水性以及微結構的探討……………………………………60
4-3-2 溶劑吸附量(solvent uptake)以及燃料滲透率
( methanol permeability ) 的分析 …………………………………….62
4-3-3 質子導電度的分析…………………………………………….63
4-4 不同構型磺酸化二氧化鈦:tube v.s. particle /磺酸化聚二醚酮 ( sPEEK ) 複合薄膜
4-4-1 保水性的分析…………………………………………………...67
4-4-2 溶劑吸附量(solvent uptake)以及燃料滲透率
( methanol permeability ) 的分析……………………………………69
4-4-3 質子導電度的分析……………………………………………70
4-5 討論…………………………………………………………………….72
第五章 結論與未來展望…………………………………………………………78
第六章 參考文獻………………………………………………………................81
參考文獻 1. W.H.J. Hogarth, J.C. Diniz da Costa, G.Q.(Max) Lu; Journal of Power Sources 2005 , 142 , 223–237
2. Li, Q.; He, R.; Gao, J.; Jensen, J. O.; Bjerrum, N. J.; J. Electrochem. Soc. 2003, 150, A1599.
3. G. Pourcelly , A. Oikonomou ,H.D. Hurwitz , C. Gavach ; J. Electroanal. Chem. 1990, 287, 43.
4. B. Smitha, S. Sridhar, A.A. Khan ; Journal of Membrane Science 2005 , 259,10–26
5. A.V. Anantaraman ; C.L. Gardner ; J. Electroanal. Chem. 1996, 414, 115.
6. Savinell, R. , Yeager, E. , Tryk, D. , Landau, U. , Wainright, J. , Weng, D. , Lux, K.;Litt, M. , Rogers, C. ; J. Electrochem. Soc. 1994, 141, L46
7. Florjanczyk, Z.; Wielgus-Barry, E.; Poltarzewski, Z. Solid State Ionics 2001, 145,119.
8. Doyle, M.; Choi, S. K.; Proulx, G. J. Electrochem. Soc. 2000, 147, 34.
9. Sun, J.; Jordan, L. R.; Forsyth, M.; MacFarlane, D. R. Electrochim. Acta 2001, 46, 1703.
10. Y.-Z. Fu and A. Manthiram ; Journal of The Electrochemical Society , 2007, 154 (1) , B8-B12
11. Adjemian, K. T., Srinivasan, S., Benziger, J., Bocarsly, A. B.; J. Power Sources 2002, 109, 356.
12. Watanabe, M. Uchida, H., Seki, Y., Emori, M.; The Electrochemical Society Meeting; PV94-2, Abstract No. 606; Electrochemical Society: Pennington, NJ, 1994, 946
13. Antonucci, P. L., Arico´, A. S.,Creti, P., Ramunni, E., Antonucci,V.; Solid State Ionics 1999, 125, 431.
14. Mauritz, K. A. ; Mater. Sci. Eng., C 6, 1998, 121.
15. Miyake, N.,Wainwright, J.S., Savinell, R.F. ;J. Electrochem. Soc. 2001, 148, A898.
16. K. T. Adjemian , S. J. Lee , S. Srinivasan , J. Benziger , A. B. ; Bocarsly Journal of The Electrochemical Society 2002, 149, A256.
17. Wang, H., Holmberg, B. A., Huang, L., Wang, Z., Mitra, A., Norbeck, J. M.,
Yan, Y. ; J. Mater. Chem. 2002 , 12 , 834.
18. A. Sacc`a , A. Carbone , E. Passalacqua, A. D’Epifanio , S. Licoccia , E. Traversa , E. Sala , F. Traini , R. Ornelas; Journal of Power Sources 2005 , 152 , 16–21
19. Elena Chalkova, Michael B. Pague, Mark V. Fedkin,David J. Wesolowski,
and Serguei N. Lvov ; Journal of The Electrochemical Society, 2005 , 152 (6) A1035-A1040
20. Elena Chalkova, Michael B. Pague, Mark V. Fedkin,David J. Wesolowski,
and Serguei N. Lvov ; Journal of The Electrochemical Society, 2005 ,152 (9) A1742-A1747
21. Bruno R. Matos, Elisabete I. Santiago, Fabio C. Fonseca, Marcelo Linardi,
Vladimir Lavayen, Rodrigo G. Lacerda, Luiz O. Ladeira,and Andre S. Ferlautob ;
Journal of The Electrochemical Society, 2007, 154 (12) B1358-B1361
22. Nikhil H. Jalani, Katherine Dunn, Ravindra Datta ; Electrochimica Acta 2005 , 51 , 553–560
23. S.H. Kwak , T.H. Yang , C.S. Kim , K.H.Yoon ; Electrochim. Acta 2004, 50, 653.
24. S.H. Kwak , T.H. Yang , C.S. Kim , K.H.Yoon; Solid State Ionics 2003, 160, 309.
25. Tony M. Thampan, Nikhil H. Jalani, Pyoungho Choi, and Ravindra Datta ; Journal of The Electrochemical Society, 2005 , 152 (2) A316-A325
26. P. Costamagna , C. Yang , A.B. Bocarsly , S. Srinivasan Electrochimica Acta 2002 , 47,1023–1033
27. Yang, C., Srinivasan, S., Arico`, A. S., Creti, P., Baglio, V., Antonucci, V.;
Electrochem. Solid-State Lett. 2001 , 4, A31.
28. Elena Chalkova,Mark V. Fedkin, Sridhar Komarneni, and Serguei N. Lvov ; Journal of The Electrochemical Society, 2007, 154 (2) B288-B295
29. V. Ramani , H.R. Kunz , J.M. Fenton ; J. Membr. Sci. 2004, 232, 31.
30. Staiti, P., Arico, A. S., Baglio, V., Lufrano, F., Passalacqua, E., Antonucci, V. ; Solid State Ionics 2001, 145, 101.
31. Zhi-Gang Shao, Prabhuram Joghee, I-Ming Hsing ; Journal of Membrane Science 2004, 229 ,43–51
32. P. Costamagna ; C. Yang , A.B. Bocarsly , S. Srinivasan ; Electrochim. Acta 2002, 47, 1023.
33. Y.F. Zhai , H.M. Zhang , J.W. Hu , B.L. Yi ; J. Membr. Sci. 2006, 280, 148.
34 Young kwon Kim, Jae Sung Lee , Chang Houn Rhee, Hae Kyung Kim, Hyuk Chang ; Journal of Power Sources 2006 , 162 , 180–185
35. Chuan-Yu Yen , Chia-Hsun Lee , Yu-Feng Lin ,Hsiu-Li Lin , Yi-Hsiu Hsiao , Shu-Hang Liao ,Chia-Yi Chuang, Chen-Chi M. Ma ; Journal of Power Sources 2007 , 17 , 336–44
36. K.D.Kreuer ; J.Membr.Sci. 2001, 185 , 29-39
37. Kobayashi T , Rikukawa M , Sanui K , Ogata N.; Solid State Ionics 1998, 106, 219.
38. Bishop MT , Karasz FE , Russo PS , Langley KH.; Macromolecules 1985, 18 ,86.
39. Devaux J , Delimoy D , Daoust D , Legras R , Mercier JP , Strazielle C , Neild E.; Polymer 1985, 26, 1994.
40. Kawahara, M., Rikukawa, M., Sanui, K., Ogata, N. ; Solid State Ionics 2000 136-137
1193.
41. Kawahara, M., kukawa, M, Sanui, K. ; Polym. Adv. Technol. 2000, 11,544.
42. Asensio, J.A.,Borros, S.,Gomez ,Romero ; J. Polym. Sci. Part A :Polym. Chem. 2002,
40, 3703.
43. Nolte, R., Ledjeff, K., Bauer, M., Mu¨ lhaupt, R.; J. Membr. Sci. 1993, 83, 211.
44. Kerres, J., Zhang, W., Cui, W. ; J. Polym. Sci. Part A 1998, 36, 1441
45. Kerres, L., Cui, W., Junginger, M. ; J. Membr. Sci. 1998, 139, 227.
46. Kerres, J. A. J. Membr. Sci. 2001, 185, 3.
47. Ho Bum Park, Chang Hyun Lee, Joon Yong Sohn, Young Moo Lee ,
Benny D. Freeman , Hyoung Jun Kim ; Journal of Membrane Science 2006 , 285,432–443
48. Kenji Miyatake, Yohei Chikashige, andMasahiro Watanabe ; Macromolecules 2003, 36, 9691-9693
49. Chang Hyun Lee, Chi Hoon Park, Young Moo Lee ; Journal of Membrane Science 2008 , 313 , 199–206
50. M. Rikukawa , K. Sanui Prog.; Polym. Sci. 2000, 25, 1463.
51. Won,J., Park,H.H., Kim,Y.J., Choi,S.W., Ha,H.Y., OH,I.H.,Kim,H.S.,Kang,Y.S.,Ihn,K.J. Marcomolecules 2003 , 36 , 3228.
52. Zhiqing Shi and Steven Holdcroft ; Macromolecules 2005, 38, 4193-4201
53. Kenji Miyatake, Hua Zhou, Hiroyuki Uchida and Masahiro Watanabe; CHEM. COMMUN., 2003, 368–369
54. Staiti, P., Minutoli, M., Hocevar, S. J. Power Sources 2000, 90 ,231.
55. Staiti, P., Minutoli, M. ; J. Power Sources 2001, 94 , 9.
56. Staiti, P. Mater. Lett. 2001, 47, 241.
57. Honma, I., Takeda, Y., Bae, J. M. ; Solid State Ionics 1999, 120, 255.
58. Nakajima, H.; Honma, I. Solid State Ionics 2002,148 , 607.
59. Honma, I., Nomura, S., Nakajima, H. ; J. Membr. Sci. 2001,185,83.
60. Nakajima, H., Nomura, S., Sugimoto, T., Nishikawa, S., Honma,I; J. Electrochem.
Soc. 2002, 149, A953.
61. Amarilla, J. M., Rojas, R. M., Rojo, J. M., Cubillo, M. J., Linares,A., Acosta, J. L.; Solid State Ionics 2000, 127, 133.
62. Bonnet, B., Jones, D. J., Roziere, J., Tchicaya, L., Alberti, G., Casciola, M. Massinelli, L., Baner, B., Peraio, A., Ramunni, E. ; J. New Mater. Electrochem. Syst. 2000, 3, 87.
63. Zaidi, S. M. J. Mikhailenko, S. D., Robertson, G. P., Guiver, M. D., Kaliaguine, S.; J. Membr. Sci. 2000, 173, 17.
64. Nunes, S. P., Ruffmann, B., Rikowski, E., Vetter, S., Richau, K.; J. Membr. Sci. 2002, 203, 215.
65. Mikhailenko, S. D.; Zaidi, S. M. J.; Kaliaguine, S.; Catal. Today, 2001, 67, 225.
66. Rozie´re, J., Jones, D. J., Tchicaya-Bouckary, L., Bauer, B. WO 02/05370, 2000.
67. Genova-Dimitrova, P., Baradie, B., Foscallo, D., Poinsignon, C., Sanchez, J. Y. ; J. Membr. Sci. 2001, 185, 59.
68. Baradie, B., Poinsignon, C., Sanchez, J. Y., Piffard, Y., Vitter, G., Bestaoui, N., Foscallo, D., Denoyelle, A., Delabouglise, D., Vaujany, M. ; J. Power Sources 1998, 74, 8.
69. Mauritz, K. A. Mater. Sci. Eng., C 1998, 6, 121.
70. Malhotra, S., Datta, R. J. Electrochem. Soc. 1997, 144, L23.
71. Yang, C., Srinivasan, S., Arico`, A. S., Creti, P., Baglio, V.,Antonucci, V. ; Electrochem. Solid-State Lett. 2001, 4, A31.
72. Alberti, G., Casciola, M., Palombari, R. ; J. Membr. Sci. 2000, 172, 233.
73. Dae Sik Kim, Ho Bum Park , Ji Won Rhim, Young Moo Lee, Journal of Membrane Science 2004,240, 37–48
74. Mikhailenko, S. D., Zaidi, S. M. J., Kaliaguine, S. ; Catal. Today, 2001, 67, 225.
75. Staiti, P. ; J. New Mater. Electrochem. Syst. 2001,4, 181.
76. Masanori Yamada Itaru Honma ; J. Phys. Chem. B 2006, 110, 20486.
77. Lavrencic S. U., Groselj, N., Orel, B., Schmitz, A., Colomban, P. ; Solid State Ionics 2001, 145, 109.
78. Je-Deok Kim, Toshiyuki Mori, and Itaru Honma; Journal of The Electrochemical Society 2006,153 (3) A508-A514
79 Yu-Huei Su, Ying-Ling Liu , Yi-Ming Sun, Juin-Yih Lai ,Da-Ming Wang , Yan Gao, Baijun Liu , Michael D. Guiver ; Journal of Membrane Science 2007,296, 21–28
80. Vinod K. Shahi, Solid State Ionics 2007,177, 3395–3404
81. Honma, I., Nakajima, H., Nishikawa, O., Sugimoto, T., Nomura, S. ; J. Electrochem.Soc. 2002, 149, A1389.
82. Park, Y., Nagai, M. ; Solid State Ionics 2001, 145, 149.
83. S.M.J. Zaidi , M.I. Ahmad, Journal of Membrane Science 2006,279, 548–557
84. Hickner, M., Kim, Y. S., Wang, F., Zawodzinski, T. A., McGrath, J. E. ; Proc. 33rdInt. SAMPE Techn. Conf. 2001, 33, 1519.
85. Ronghuan He , Qingfeng Li , Gang Xiao , Niels J. Bjerrum ; Journal of Membrane Science 2003, 226, 169.
86. M. Rikukawa, K. Sanui, Prog. Polym. Sci. 2000, 25, 1463-1502
87. Gupta PN. , Singh KP. Solid State Ionics 1996, 86, 319.
88. Vargas MA. , Vargas RA. , Mellander B-E. Electrochim Acta 1999, 44, 4227.
89. Tanaka, R., Yamamoto, H., Shono, A., Kubo, K., Sakurai, M.; Electrochim. Acta
2000,45,1385.
90. Dabrowska, A., Stys, S., Wieczorek, W., Przyluski ; J. Proceedings of the 1st
International Symposium on New Materials for Fuel Cell Systems, Montreal,
Canada, 1995; Electrochemical Society,Inc.: Pennington, NJ, 1995, p 95.
91. Donoso, P., Gorecki, W., Berthier, C., Defendini, F., Poinsignon,C., Armand, M.
B. ; Solid State Ionics 1988, 28-30,969.
92. Tsuruhara K. , Rikukawa M. , Sanui K. , Ogata N. , Nagasaki Y. , Kato M. Electrochim Acta 2000, 45, 1391.
93. Bozkurt, A., Meyer, W.H.; Solid State Ionics 2001, 138, 259.
94. Rogriguez, D., Jegat, T., Trinquet, O., Grondin, J., Lassegues, J. C.; Solid State
Ionics 1993,61, 195.
95. Stevens, J. R., Raducha, D.; Solid State Ionics 1997,97,347.
96. Wieczorek W., Stevens, J. R.; Polymer 1996,38, 2057.
97. Qingfeng, L. , Hjuler, H.A. , Bjerrum, N.J. ; J. Appl. Electrochem. 2001, 31, 773.
98. S. R. Narayanan, Shiao-Pin Yen, L. Liu, and S. G. Greenbaum, J. Phys. Chem. B 2006, 110, 3942-3948
99. Masanori Yamada , Itaru Honma Polymer 2005, 46, 2986.
100. Yongzhu Fu, Wen Li, Arumugam Manthiram; Journal of Membrane Science 2008,310, 262–267
101. Jochen Meier-Haack , Antje Taeger , Claus Vogel , Kornelia Schlenstedt , Wolfgang Lenk Dieter Lehmann Separation and Purification Technology 2005, 41, 207.
102. Stevens, J. R., Raducha, D. Solid State Ionics 1997,97, 347.
103. Zaidi, S. M. J., Chen, S. F., Mikhaikenko, S. D., Kaliaguine, S.; J. New Mater.
Electrochem. Syst. 2000,3, 27.
104. Lasse´gues, J. C., Grondin, J., Hernandez, M., Maree, B. ; Solid State Ionics
2001,145, 37.
105. Guiver, M. D., Robertson, G. P., Foley, S. ; Macromolecules 1995, 28, 7612.
106. Nam-Soon Choi, Yong Min Lee, Baik Hyeon Lee, Je An Lee, Jung-Ki Park; Solid State Ionics 2004,167, 293–299
107. Roger Mueller , Hendrik K. Kammler , Karsten Wegner and Sotiris E. Pratsinis;
Langmuir 2003﹐19﹐160.
108. Mingdeng Wei, Yoshinari Konishi, Haoshen Zhou, Hideki Sugihara, and
Hironori Arakawa ; Journal of The Electrochemical Society ; 2006, 153 (6) A1232-A1236
109. Wen Guang Liu, Kang De Yao,Polymer 2001,42, 3943±3947
110. Nadia Walsby, Sami Hietala,Sirkka Liisa Maunu, Franciska Sundholm,Tanja Kallio,Go¨ ran Sundholm ; Journal of Applied Polymer Science 2002, 86, 33–42
111. Dmitry Bavykin,Valentin Parmon,Alexei Lapkina and FrankWalsh ; Mater. Chem. 2004﹐14﹐3370.
112.呂怡萱,「二氧化鈦奈米管於染料敏化太陽能池之探討」,國立中央大學,碩士論文民國95年
113. M. Luisa Di Vona , Zakarya Ahmed, Serafina Bellitto,Alessandro Lenci, Enrico Traversa, Silvia Licoccia ; Journal of Membrane Science 2007, 296, 156
指導教授 諸柏仁(Peter Po-jen Chu) 審核日期 2008-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明