博碩士論文 942204003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.144.94.134
姓名 林志信(Chih-hsin Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 血清素受體2B對酸敏感離子通道3與辣椒素受體1的影響
(The effects of serotonin receptor 2B on the acid-sensing ion channel 3 (ASIC3) and transient receptor potential cation channel 1(TRPV1))
相關論文
★ 週邊發炎反應增加酸敏感受體- TDAG8基因在背根神經節之表現量★ 酸敏感G蛋白偶合受體,G2A,在ASIC3基因剔除小鼠中改變表現量
★ MrgB4受體專一表現於感覺神經元,且在ASIC3基因剔除小鼠中有不同的表現。★ 酸敏感G蛋白偶合受體在小鼠背根神經節神經元中的訊息傳導路徑
★ 酸敏感G蛋白偶合受體功能上的拮抗機制★ TDAG8活化後經由PKA與PKCε增強辣椒素受體的敏感度
★ 台灣海岸植物之內生真菌多樣性研究★ ASIC3、TRPV1或TDAG8基因缺失會減緩關節炎誘導的熱痛覺過敏並抑制衛星膠細胞表現
★ 抑制OGR1表現可減緩慢性神經性疼痛藉由減少顆粒性白血球數及非IB4神經元之鈣訊號★ 抑制OGR1及G2A表現可藉由調控非IB4神經元鈣訊號減緩酸所誘導長期疼痛
★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P★ Peripheral ASIC3 activation involves in the late phase of CCI-induced mechanical allodynia by switching CGRP-positive population from small to large diameter neurons
★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults★ G-蛋白偶合接受體與G-蛋白訊號調控蛋白之整合型資料庫
★ 血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加★ 酸敏感的G蛋白偶合受體─OGR1表現在背根神經節內與痛覺相關的感覺神經元上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 當組織受傷而產生發炎反應時,會有發炎物質從細胞中釋出,以及組織局部酸化的現象。造成組織酸化的高濃度氫離子會活化神經元上的一些離子通道,如酸敏感受體3(ASIC3)、辣椒素受體1(TRPV1)等,造成發炎痛與痛覺過敏的現象,而同時由細胞中釋出的發炎物質會加強痛覺過敏的現象。血清素是一種發炎物質,現今已知可以調節大鼠酸敏感離子通道3基因表現與辣椒素受體1離子通道反應,可是血清素是藉由哪個受體及機制來發揮它的作用仍然不是很清楚,本篇論文的主題就是在探討在小鼠發炎中酸敏感離子通道3與辣椒素受體1的變化以及血清素能否藉由血清素受體2B調節一些離子通道的特性。我們發現當注射CFA引起小鼠發炎時,小鼠背根神經上的酸敏感受體3與辣椒素受體1的基因表現量並沒有改變,而血清素受體2亞族表現量有增加的現象。而在血清素注射到小鼠中或直接刺激小鼠體外培養感覺神經元,酸敏感離子通道3與辣椒素受體1基因表現都沒有明顯改變,推測發炎時痛覺傳遞調控不是經由影響酸敏感離子通道3與辣椒素受體1基因表現造成。之前文獻指出血清素能增強辣椒素受體1離子通道的反應,並可受血清素受體2與4亞族抑制劑抑制,我們將血清素受體2B與辣椒素受體1共同轉染到人類胚胎腎臟細胞中,在依序刺激血清素與辣椒素,發覺血清素刺激血清素受體2B後辣椒素受體對於辣椒素的反應很明顯增強,推測血清素可經由血清素受體2B來增強辣椒素受體1的反應。
摘要(英) Inflammation induced by tissue injury, infection or tumor growth often produces chronic and persistent pain. A key factor of inflammation is tissue acidosis that contributes directly in pain and hyperalgesia. This acid-evoked pain is potentiated by inflammatory mediators released from the primary sensory terminal and from non-neural cells in the environment. It has been proven that the transcripts of acid-sensing ion channel 3(ASIC3) and the transient receptor potential V1(TRPV1) are enhanced during nflammation or after stimulation of inflammatory mediators such as serotonin(5-hydroxytryptamine, 5-HT), bradykinin, nerve growth factor. The channel excitability of ASIC3 and TRPV1 is also enhanced by inflammatory mediators. However, it remains unclear how serotonin regulate sASIC3 and TRPV1 functions in sensory neuron. The objective of this thesis is to identify the effect of serotonin receptors on ASIC3 and TRPV1. To address that, gene expression of ASIC3 and TRPV1 was first examined after complete Freund’s adjuvant-induced inflammation or serotonin injection, and then signaling of serotonin receptors 2B and TRPV1 was characterized. Unexpectedly, gene expression of mouse ASIC3 and TRPV1 was not changed after inflammation or serotonin injection. But HTR2B activation could potentiate TRPV1 response to capsaicin. We suggested that serotonin could enhance TRPV1 response through HTR2B by modulating channel property, not by gene expression.
關鍵字(中) ★ 血清素
★ 血清素受體2B
★ 辣椒素受體1
關鍵字(英) ★ HTR2B
★ serotonin
★ TRPV1
論文目次 中文摘要………………………………………………Ⅰ
英文摘要………………………………………………Ⅱ
目錄……………………………………………………Ⅳ
圖目錄…………………………………………………Ⅹ
表目錄…………………………………………………ⅩII
第一章. 緒論
1-1.痛覺………………………………………………………2
1-1-1.痛覺感受體………………………………………………2
1-1-2.痛覺傳遞…………………………………………………3
1-2.發炎痛……………………………………………………4
1-2-1.組織酸化………………………………………………………4
1-2-2.發炎物質………………………………………………………5
1-3.離子通道…………………………………………………6
1-3-1.辣椒素受體1…………………………………………………6
1-3-2.酸敏感離子通道3……………………………………………7
1-4.血清素與血清素受體…………………………………………8
1-5.動機及目的………………………………………………10
第二章 材料與方法
2.1 實驗材料
2.1.1 菌株……………………………………………………………12
2.1.2 細胞株…………………………………………………………12
2.1.3 實驗動物………………………………………………………12
2.1.4 藥品……………………………………………………………12
2.1.4.1 購自sigma藥廠……………………………………………12
2.1.4.2 購自invitrogen公司………………………………………12
2.1.4.3 購自Merck藥廠…………………………………………… 12
2.1.4.4 購自J.T.Baker藥廠…………………………………………12
2.1.4.5 購自Fluka公司………………………………………………12
2.1.4.6 購自Qiagen公司………………………………………… 13
2.1.4.7 其他…………………………………………………………13
2.2 實驗方法
2-2-1.大腸桿菌的轉型作用…………………………………………14
2-2-1-1.勝任細胞的備製……………………………………………14
2-2-2-2.轉型作用……………………………………………………14
2-2-2.細菌培養………………………………………………………14
2-2-2-1.固體培養……………………………………………………14
2-2-2-2.含有Ampicillin的LB培養盤之配製……………………… 14
2-2-2-3.細菌塗盤培養………………………………………………14
2-2-2-4.液體培養………………………………………………………………15
2-2-2-5.菌種保存……………………………………………15
2-2-3.質體製備………………………………………………………15
2-2-3-1.小量製備的方法(miniprep)………………………………15
2-2-3-2.大量製備的方法(midiprep)………………………………16
2-2-4.基因轉殖………………………………………………………17
2-2-4-1.載體的製備…………………………………………………17
2-2-4-2.接合作用(ligation)………………………………………17
2-2-5.RNA的萃取……………………………………………………18
2-2-5-1.使用TRIzol reagent的方法………………………………18
2-2-5-2.使用RNeasy Mini kit的方法…………………………… 18
2-2-5-3.染色體DNA(genomic DNA)污染的檢測及處理……………19
2-2-6.cDNA的合成………………………………………………… 19
2-2-6-1.一般組織cDNA合成…………………………………………19
2-2-6-2.背根神經節與三叉神經節cDNA合成……………………… 19
2-2-7.引子(primer)的設計…………………………………………20
2-2-8.聚合酶鏈反應………………………………………………… 20
2-2-8-1.反轉錄-聚合酶鏈反應………………………………………20
2-2-8-1.定量聚合酶鏈反應(Quantitative PCR,Q-PCR)…………21
2-2-9.聚合酶鏈反應產物的萃取與純化…………………………… 21
2-2-9-1.瓊脂醣膠的製備及膠體電泳……………………………… 21
2-2-9-2.聚合酶鏈反應的產物純化(gel extraction)……………21
2-2-10.細胞培養………………………………………………………22
2-2-11.轉染作用………………………………………………………22
2-2-11-1.玻片的前處理………………………………………………22
2-2-11-2.轉染作用……………………………………………………22
2-2-12.鈣離子分析……………………………………………………23
2-2-13.發炎反應實驗…………………………………………………24
第三章 結果
3-1.在注射稀釋CFA引起發炎的小鼠背根神經節中,血清素受體2亞族基因表現量有顯著增加,酸敏感離子通道3與辣椒素受體1則沒有顯著變化。…………………………………………………………26
3-2.在注射CFA引起發炎的小鼠背根神經節中,酸敏感離子通道3基因表現明顯下降,但血清素受體2B沒有顯著變化。………………………………………………………………26
3-3.在carrageenan引起的發炎反應中,酸敏感離子通道3沒明顯變化,血清素受體2B則有增加的現象。……………………………27
3-4.在血清素刺激的小鼠背根神經節中血清素受體2C表現量大量增加。…………………………………………………………… 27
3-5. 將小鼠背根神經節作成的primary culture用血清素刺激後,酸敏感受離子通道3,辣椒素受體1與血清素受體2B基因表現都沒有明顯變化。………………………………………………………… 27
3-6. 血清素受體基因分布在小鼠的背根神經節中。 ……………………………………………………………28
3-7. 血清素受體2B轉染至人類胚胎腎臟細胞大量表現後,受血清素刺激後產生的反應。……………………………………………… 28
3-8. 在人類胚胎腎臟細胞中大量表現的血清素受體2B在不同環境或抑制劑的影響下所產生的反應。………………………………… 29
3-9. 辣椒素受體1轉染至人類胚胎腎臟細胞大量表現後,受辣椒素刺激後產生的反應。……………………………………………… 30
3-10. 在血清素受體2B與辣椒素受體1共同轉染的細胞中,血清素受體的活畫會增強辣椒素受體1活化產生的反應。……………30
第四章 討論
4-1.在小鼠注射CFA、carrageenan引起發炎後,酸敏感離子通道3基因表現量無顯著改變。……………………………………………32
4-2.辣椒素受體1在CFA引起發炎後的小鼠背根神經節中基因表現量並沒有明顯改變。…………………………………………………… 33
4-3.血清素受體2亞族在CFA引起的發炎反應基因表現有增加的現象。……………………………………………………………… 34
4-4.在carrageenan引起發炎的小鼠中,酸敏感離子通道3基因沒有明顯改變,但血清素受體2B表現量增加。……………………… 35
4-5.在小鼠背根神經節經血清素刺激後,酸敏感受離子通道3與辣椒素受體1基因都沒有明顯改變。…………………………………… 36
4-6.在小鼠背根神經節經血清素刺激後,血清素受體基因都沒有明顯改變。……………………………………………………………… 36
4-7.血清素受體2B訊息傳遞是經由Gq路徑,轉染到人類腎臟胚胎細胞後會受磷脂酶抑制劑與受體抑制劑抑制。…………………………37
4-8.在血清素受體2B與辣椒素受體1轉染的細胞中,血清素受體2B的活化可以增強辣椒素受體1的反應。………………………………38
第五章 參考文獻 ……………………………………………… 71
附錄……………………………………………………………………77
參考文獻 Amaya F., Shinosato G., Nagano M., Ueda M., Hashimoto S., Tanaka Y., Suzuki H., and Tanaka M., 2004. NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur. J. Neurosci. 20, 2303-2310 .
Ballou, L. R., Botting, R. M., Goorha, S., Zhang, J., Vane, J. R., 2000. Nociception in cyclooxygenase isozyme-denficient mice. Proc Natl Acad Sci U S A. 97, 10272-10276.
Basbaum, A.I.and Woolf, C.J., 1999. Pain. Curr. Biol. 9, 429-431.
Barnes, N.M. and Sharp, T., 1999. A review of central 5-HT receptors and their function. Neuropharmacology. 38, 1083-1152.
Carlton SM, Coggeshall RE., 2001. Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization. Neurosci Lett. 310, 53-56.
Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D. and Julius, D., 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824.
Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.F., Trafton, J.A., Petersen-Zeitz,
K, R., Koltzenburg, M., Basbaum, A.I. and Julius, D., 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306-313.
Costigan M. and Woolf C. J., 2000. Pain: Molecular mechanisms. J. Pain., 1, 35-44.
Dray A., 1995. Inflammatory mediators of pain. Br. J. Anaesth. 75,125-131.
Gitterman DP., Wilson J., Randall AD., 2005. Functional properties and pharmacological inhibition of ASIC channels in the human SJ-RH30 skeletal muscle cell line. J. Physiol. 562, 759-769.
Hunt S.P., and Mantyh P. W., 2001. The molecular dynamics of pain control. Nature reviews, 2, 83-90.
Julius D. and Basbaum A. I., 2001. Molecular mechanisms of nociception. Nature, 413, 203-210.
Jones RC., Xu L., Gebhart GF., 2005. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 25, 10981-10989.
Kandel E.R., Schwartz J.H. and Jessell, T.M., Principles of neural science. 4th edition. Chapter 24.
Kinhart O., Obreja O., and Kress M., 2003. The inflammatory mediators serotonin, prostaglandinf E2 and bradykinin evoke calcium influx in rat sensory neurons. Neurosci., 188, 69-74.
Mamet, J., Baron, A., Lazdunski, M. and Voilley N., 2002. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of asic-sensing ion channels. J. Neurosci. 22, 10662-10670.
Mamet J., Lazdunski M., and Voiiley N., 2003. How nerve growth factor drives physiological and inflammatory expressions of Acid-sensing ion channel 3 in sensory neurons. J. Biol. Chem. 278 (49), 48907-48913.
Mandadi S., Numazaki M., Tominaga M., Bhat MB., Armati PJ., Roufogalis BD. Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium. 35, 471-478.
Mathews KA., 2000. Pain assessment and general approach to management. Vet Clin North Am Small Anim Pract. 30, 729-755.
Mizumura K., Sato J., Kumazawa T., 1987. Effects of prostaglandins and other putative chemical intermediaries on the activity of canine testicular polymodal receptors studied in vitro. Pflugers Arch. 408, 565-572.
Nebigil, C.G., Schaerlinger, B., Hickel, P., Launay, J.M. and Maroteaux, L., 2001. Developmentally regulated serotonin 5-HT2B receptor. Int. J. Devl. Neurosci.19, 365-372.
Nicholson, R., Small, J., Dixon, A.K., Spanswick, D. and Lee, K., 2003. Serotonin receptor mRNA expression in rat dorsal root ganglion neurons. Neurosci. Lett. 337, 119-122.
Nicholas RS., Winter J., Wren P., Bergmann R., Woolf CJ., 1999. Peripheral inflammation increases the capsaicin sensitivity of dorsal root ganglion neurons in a nerve growth factor-dependent manner. Neuroscience. 91, 1425-1433.
Ohta T, Ikemi Y, Murakami M, Imagawa T, Otsuguro K, Ito S. 2006. Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons. J. Physiol. 576, 809-822.
Pierce PA., Xie GX., Levine JD., Peroutka SJ., 1996. 5-Hydroxytryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: a polymerase chain reaction study. Neuroscience. 70, 553-559.
Reeh P. W. and Steen K. H., 1996. Tissue acidosis in nociception and pain. Brain research 113, 143-151.
Sawynok J., Reid A., and Meisner J., 2006. Pain behaviors produced by capsaicin: influence of inflammatory mediators and nerve injury. J. Pain. 7 (2), 134-141.
Scholz J. and Woolf C.J., 2002. Can we conquer pain? Nature. 5, 1062-1067.
Simonetti M., Fabbro A., D'Arco M., Zweyer M., Nistri A., Giniatullin R., Fabbretti E., 2006. Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin. Mol. Pain. 2, 1-11.
Steen, K.H., Reeh, P.W., 1993. Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 154, 113–116.
Steen K.H., Reeh P.W., Anton F. and Handwarker H.O., 1992. Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J. Nurosci. 12 (1), 86-95.
Sluka K.A., Kalra A., Moore S.A., 2001. Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve. 24, 37-46.
Sluka KA., Price MP., Breese NM., Stucky CL., Wemmie JA., Welsh MJ., 2003. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain. 106, 229-239.
Steen K.H., Steen A.E., Kreysel H.-W. and Reeh P.W., 1996. Inflamatory mediators potentiate pain induced by experimental tissue acidosis. Pain. 66, 163-170.
Sugiuar T., Bielefeldt K., Gebhart GF., 2004. TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. J. Neurosci. 24, 9521-9530.
Sutherland S. P., Benson C. J., Adelmen J. P. and McCleskey E.W., 2001. Acid-sensing ion cahnnels 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl. Acad. Sci. USA, 98 (2), 711-716.
Tominaga M. and Julius D., 2000. Capsaicin receptor in the pain pathway. J. Pharmacol. 83, 20-24.
Ugawa S., Ueda T., Nishigaki M., Shibata Y. and Shimada S., 2002. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J. Clin. Invest. 110, 1185-1190.
Vasko MR., Campbell WB., Waite KJ., 1994. Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture. J. Neurosci. 14, 4987-4997.
Voilley, N., de Weille, J., Mamet, J. and Lazdunski, M., 2001. Nonsteroid anti- inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J. Neurosci. 21, 8026-8033.
Woolf C.J. and Salter M.W., 2000. Neuronal plasticity: increasing the gain in pain. Science 288, 1765-1768.
Waldmann, R. and Lazdunski, M., 1998. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8, 418-424.
Wainscott DB., Cohen ML., Schenck KW., Audia JE., Nissen JS., Baez M., Kursar JD., Lucaites VL., Nelson DL., 1993. Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor. Mol. Pharmacol. 43, 419-426.
Wu, S.X., Zhu, M., Wang, W., Wang, Y.Y., Li, Y.Q. and Yew, D.T., 2001. Changes of the expression of 5-HT receptor subtype mRNA in Rat dorsal root gangion by complete Freund’s adjuvant-induced inflammation. Neurosci. Lett. 307, 183-186.
Zhou Y., Zhou ZS., Zhou ZQ., PKC regulates capsaicin-induced currents of dorsal root gabglion neurons in rats. Neuropharmacology 41, 601-608.
指導教授 孫維欣(Wei-hsin Sun) 審核日期 2007-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明