博碩士論文 101323045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:18.225.156.159
姓名 黃冠中(Kuan-Chung Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 晶矽覆蓋層對矽中佈植氫離子擴散的抑制效應
(Suppression Effect of Si/SiO2 Bilayer on Out-diffusion of Hydrogen Ions Implanted in Silicon)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 現今超大型積體電路的應用方面,SOI 基板比起許多傳統矽基板有著許多
更好的優點,用Smart-CutR的技術可製造出高品質SOI 結構,然而在
Smart-Cut 的製程中氫離子的分布對薄膜轉移之品質有極大影響,矽中氫離
子的濃度必須大於最低可裂片濃度方能進行轉移,因此如何使矽晶圓中所
佈植的氫離子有效的保存在矽晶圓中為薄膜轉移成功與否的關鍵之一。
本實驗利用移除30nm 多晶矽層與100nm 氧化層的試片觀察雙層結構的有
無對氫離子擴散的抑制情形,透過SIMS 檢測觀察試片在移除後四個月後的
氫離子濃度變化,由檢測結果觀察到30nm 多晶矽層對於氫離子擴散抑制效
果明顯,若使用多晶矽與二氧化矽層結構更可以有效阻擋佈植在矽晶圓中
的氫離子向外擴散,使矽中氫離子的濃度下降變慢,延長試片可進行薄膜
轉移的時間。
摘要(英) Application of modern VLSI circuits, SOI substrate has many
advantages compared to many conventional silicon substrate.Smart-Cut
R technology can produce high-quality SOI structure.However,the
distribution of hydrogen ions implanted in Smart-Cut process has a great
impact on the quality of the film transfer, the concentration of hydrogen
ions in silicon must be higher than the minimum concentration of
lobes.Therefore,how to effective preserve the implanted hydrogen ions in
the silicon wafer is one of the keys to success film transfer.
The experiment remove 30nm poly-silicon layer and 100nm oxide layer,
and observe the effect of double layers structure suppress the hydrogen
ion diffusion in silicon.The hydrogen ion concentration changes detected
by SIMS to observe the test piece after four months removed, the test
results observed that 30nm poly-silicon layer can effective suppress the
hydrogen ion diffusion.Poly-silicon and silicon oxide layer structure is
more effective in blocking implantation outward diffusion of hydrogen ions
in the silicon wafer, the concentration of hydrogen ions in silicon drops
slow, the test strip can extend the time of the transfer film.
關鍵字(中) ★ 晶矽覆蓋層
★ 氫離子擴散
關鍵字(英) ★ Si/SiO2 Bilayer
★ Out-diffusion of Hydrogen Ions
論文目次 目錄
摘要 .................................................... VI
Abstract ............................................... VII
致謝 .................................................. VIII
目錄 .................................................... IX
圖目錄 ................................................. XII
表目錄 ................................................. XIV
第一章緒論 ............................................... 1
1.1 研究背景 ............................................. 1
1.2 研究動機 ............................................. 3
第二章 文獻回顧 ......................................... 8
2.1 離子佈植技術 ......................................... 8
2.2 離子佈植造成的矽基材損傷 .............................. 8
2.3 離子佈植應用於薄膜轉移技術 ............................ 9
2.4 蝕刻機制 ............................................ 10
2.4.1 TMAH 應用於濕式蝕刻技術 ............................ 11
2.4.2 HF 應用於蝕刻技術 .................................. 12
2.5 氫在矽晶圓中的現象 .................................. 13
2.5.1 氫氣在氧化矽層與多晶矽層之擴散 .................... 15
2.5.2 氣泡與微裂縫形成機制 .............................. 16
第三章 實驗準備與研究步驟 ............................... 24
3.1 實驗試片製備 ........................................ 24
3.2 晶圓清洗 ............................................ 25
3.3 氧化層生成 .......................................... 25
3.4 多晶矽層沉積 ........................................ 26
3.5 氫離子佈植 .......................................... 26
3.6 多晶矽層移除 ........................................ 27
3.7 氧化層移除 .......................................... 27
3.8 高溫熱處理 .......................................... 28
3.9 影像分析 ............................................ 28
3.10 SIMS 檢測 .......................................... 28
3.11 實驗器材與檢測儀器 .................................. 29
第四章 結果與討論 ....................................... 36
4.1 退火後氣泡分布分析 .................................. 36
4.2 SIMS 檢測分析 ....................................... 37
4.3 多晶矽覆蓋層對佈植氫離子擴散濃度影響 ................ 42
4.4 多晶矽覆蓋層與氧化層對佈植氫離子擴散濃度影響 ........ 42
第五章 結論 ............................................. 45
參 考 文 獻 ............................................. 47
參考文獻 [1] P.K. Bondyopadhyay,” Moore′s law governs the silicon revolution”, IEEE, Vol.
86,Issue: 1, pp. 78-81, (1998).
[2] K. Rupp and S. Selberherr, “The economic limit to moore’s law,”Proceedings of
the IEEE, vol. 98, no. 3, pp. 351–353, (2010).
[3] G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator”, Journal of
Applied Physics, Vol. 93, Issue 9, pp. 4955-4978, (2003).
[4] 莊達人,VLSI 製造技術,五版,高立圖書有限公司,臺北縣,(2002)。
[5] J. B. Kuo and K.-W. Su, CMOS VLSI Engineering: Silicon-on-Insulator (SOI),Kluwer
Academic Publishers, Boston, (1998).
[6] 李隆盛,「非正統之金氧半導體場效電晶體」,電子與材料雜誌, 14,
pp.80-85,(2002).
[7] J.P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI ,Springer Science
Business Media, Inc., New York, (2004)
[8] M. Bruel, “Silicon-on-insulator material technology”, Electronics Letters,
31,p.95.(1995)
[9] M. Bruel, “Application of hydrogen ion beams to Silicon on Insulator material
technology”,Nucl. Instrum. Methods Phys., 108 , pp. 313–319,(1996).
[10] B. Aspar, M. Bruel, H. Moriceau et al.,” Basic mechanisms involved in the
Smart-Cut(R) process“,Microelectron. Engng., 36 ,pp. 233–240,(1997).
[11] Q.-Y. Tong, R. Scholz, and U. Gosele, and T.-H. Lee, L.J. Huang, Y.-L. Chao, and
T.Y. Tan, "A smarter-cut approach to low temperature silicon layer transfer", Appl.
Phys. Lett. 72, PP. 49-51,(1998).
[12] Q. Y. Tong, T. H. Lee, P. Werner, U. Gosele, R. B. Bergmann, and J.H. Werner, J.,
“Fabrication of Single Crystalline SiC Layer on High Temperature
Glass”,Electrochem. Soc., 144,p.111-113, (1997).
[13] E. Jalaguier, B. Aspar, S. Pocas, J. F. Michaud, M. Zussy, A. M. Papon, and
M.Bruel, “Transfer of 3 in GaAs film on silicon substrate by protonimplantation
process”, Electron. Lett., 34 p. 408-409, (1998).
[14] U. M. Gosele and Q. Y. Tong, IEEE 12th International Conference of InP and
related materials, 9-12, Williamsburq, VA, USA ,(2000).
[15] M. Bruel, B. Aspar, H. Moriceau, E. Jalaguier, and Lagahe, Electrochem.
Soc.Proceeding of the Third International Symposium on Defect in Silicon,78
-Pennington, NJ, USA, Vol. 99-1, pp. 203-214 ,(1999).
[16] Y. Tu and J. Tersoff, Phys. Rev. Lett. 84, 4393 (2000).
[17] von Herrn Ionut Radu, “Layer transfer of semiconductors and complex oxides by
helium and/or hydrogen implantation and wafer bonding”, Martin Luther University,
Ph.D dissertation, pp.77-88,( 2003).
[18] J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 3rd
Edition,Springer Science Business Media Inc., New York, (2004).
[19] Q.Y. Tong and U. M. Gosel , Semiconductor Wafer Bonding: Science and
Technology, John Wiley & Sons, Inc., New York, (1999).
[20] J. H. Stathis and E. Cartier, Phys. Rev. Lett. 72, 2745 (1994).
[21] J. B. Lasky, et al., “Silicon-on-Insulator (SOI) by Bonding and
Etch-Back”,Electron Devices Meeting, 1985 International, Vol. 31, pp. 684-687,
(1985).
[22] H. Habuka, et al., “Roughness of Silicon Surface Heated in Hydrogen
Ambient”,Journal of The Electrochemical Society, Vol. 142, Issue 9 pp. 3092-3098,
(1995).
[23] T. Yonehara and K. Sakaguchi, “ELTRANR; Novel SOI Wafer
Technology”,JSAP International, No. 4, pp. 10-16, (2001).
[24] S. S. Iyer and A. J. Auberton-Herv′e, “Silicon Wafer Bonding Technology for
VLSI and MEMS Applications”, Inspec , London, (2002).
[25] M. Burel, United States Patent, Patent Number:5374564.
[26] C. Maleville and C. Mazure, “Smart-CutR Technology: from 300mm Ultrathin
SOI Production to Advanced Engineered Substrates”, Solid-State Electronics, Vol.
48, Issue 6, pp. 1055-1063, (2004).
[27] Michael Quirk, Julian Serda, Semiconductor manufacturing technology, Upper
Saddle River, NJ : Prentice Hall, (2001).
[28] H. Xiao 著,半導體製程技術導論,羅正忠和張鼎張譯,三版,臺灣培生教
育出版,臺北市,(2007)。
[29] H. Wu, J.Cargo and M. White, “Characterization of Various Etching Techniques
for Gate Level Failure Analysis and Substrate Decoration for Advanced Cu/low k
Technologies”, Physical and Failure Analysis of Integrated Circuits, 2005. IPFA
2005. Proceedings of the 12th International Symposium on the, pp. 242-248,
Singapore, (2005).
[30] C. H. Seager and D. S. Ginley, “Studies of the hydrogen passivation of silicon
grain boundaries”, Journal of Applied Physics, Vol. 52, Issue 2, pp. 1050-1055,
(1981).
[31] J. I. Pankove and N. M. Johnson., “Hydrogen in Semiconductors”,
Semiconductors and Semimetetals, 34 , NY, (1991).
[32] B. Sun et al., “Vibrational Lifetimes of Hydrogen in Silicon”, Hydrogen in
Materials and Vacuum System, pp. 67-73 ,(2003).
[33] S. Estreicher et al., “First-principles calculations of vibrational lifetimes in
silicon ”, Texas Tech University, (2006).
[34] Eugene E. Haller, “Hydrogen in crystalline semiconductors”, Semicond. Sci.
Technol., 6, pp.73-84, (1991).
[35] A. Y. Usenko and W. N. Carr, “Blistering on Silicon Surface Caused by Gettering
of Hydrogen on Post-Implantation Defects”, Mat. Res.Soc. Symp. Proc., Vol. 681E,
pp.I331-336, (2001).
[36] Jing Wang et al., “Microstructure evolution of hydrogen-implanted silicon during
the annealing process”, Microelectronic Engineering, 66, pp. 314-319,( 2003).
[37] S. Romani and J.H. Evans, “Platelet Defects in Hydrogen Implanted Silicon”,
Nucl. Instr and Meth. in Phys. Res. B, 44, pp. 313-317, (1990).
[38] G. F. Cerofolini, et al., “Hydrogen-related complexes as the stressing species in
high-fluence, hydrogen-implanted, single-crystal silicon”, Physical Review B, Vol.
46, Issue 4, pp. 2061-2070, (1992).
[39] M. Gao, et al., “A transmission electron microscopy study of microstructural
defects in proton implanted silicon”, Journal of Applied Physics, Vol. 80, Issue 8,
pp. 4767-4769, (1996).
[40] C. G. Van de Walle, et al., “Theory of hydrogen diffusion and reactions in
crystalline silicon”, Physical Review B, Vol. 39, Issue 15, pp. 10791-10808, (1989).
[41] KJ. Chang and DJ Chadi, “Hydrogen bonding and diffusion in crystalline silicon”,
Physical Review B, Vol.40, pp.644-653, (1989).
[42] Bo Chen, “Mechanisms of layer-transfer related to silicon-on-insulator
structures”, New Jersey Institute of Technology, Ph.D. Dissertation, (2004).
[43] Jing Wang et al., “Microstructure evolution of hydrogen-implanted silicon during
the annealing process”, Microelectronic Engineering, 66, pp. 314-319, (2003).
[44] B. Tuttle, Phys. Rev. B 60, 2631 (1999).
[45] S. N. Rashkeev, M. Di Ventra, and S. T. Pantelides, Appl.Phys. Lett. 78, 1571 (2001)
[46] B. J. Mrstik and R. W. Rendell, IEEE Trans. Nucl. Sci.38, 1101 (1991); R. E.
Stahlbush, A. H. Edwards, D. L.Griscom, and B. J. Mrstik, J. Appl. Phys. 73, 658
(1993).
指導教授 李天錫(Tian-Shi Lee) 審核日期 2014-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明