博碩士論文 942204011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:13.58.145.198
姓名 陳美君(Mei-chun Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Pseudomonas putida TX2 生長於辛/壬基苯酚之動力學及其鄰苯二酚加氧酵素之表現
(The growth kinetics and analysis of catechol 2,3-dioxygenas(C23O)of Pseudomonas putida TX2 grows in octylphenol/nonylphenol)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 烷基苯酚聚氧乙基醇類(Alkylphenyl polyethoxylates, APEOn)為非離子性的界面活性劑,已廣泛使用在工業、農業及家用;烷基苯酚(Alkylphenol, AP)為APEOn重要的中間代謝產物,一旦進入環境中,因其具雌激素活性會累積於生物體中,對於人類健康和環境生態造成危害,而在哺乳類動物中之代謝仍不明確,環境中此類化合物的生物分解主要以細菌為主。本研究篩選出以辛基苯酚(Octylphenol, OP)為唯一生長碳源之兩株菌,利用呼吸鏈指紋及16S rDNA序列分析法鑑定出兩株分別為Pseudomonas rhizosphaerae 及 Methylobacterium organophilum。將此兩株菌與本研究群先前篩出之OP分解菌Pseudomonas putida TX2和Pseudomonas sp. OP1比較,顯示P. putida TX2利用OP之生長速率,優於其他三者。P. putida TX2 來自經常施用同類界面活性機之農用土壤所製成之土壤縮模,於縮模中外加OPEOn,經兩個月馴化篩選而得,其不僅可利用寬廣濃度範圍(0.05~20%)之OPEOn,為唯一碳源生長,在最適濃度中(0.5 %)比生長速率為0.5 h-1,亦能利用(0.00025~0.1%) OP為唯一生長碳源,在最適濃度(0.002%)下比生長速率為0.47 d-1,
本研究集中在P. putida TX2利用不同碳源之生長動力學,並初步分析可能參與OP苯環切割之酵素。在生長動力學研究方面,P. putida TX2分別以各種濃度的succinate、OP、壬基苯酚 (Nonylphenol, NP)為單一碳源,或是兩兩碳源組合,利用酵素動力學相同的模式,推導比生長率(μ)、最大比生長率(μmax)、半飽和係數(KS) 、基質抑制係數(KI)等各項參數,結果顯示P. putida TX2培養在單一碳源succinate、NP、OP時,μmax分別為0.860、0.086和0.021 hr-1。Ks分別為155.41 mg/L、80.35 mg/L和122.00 mg/L。
P. putida TX2利用兩兩碳源的組合時,當高濃度succinate存在下(100~5000 mg/L)加入10~2500 mg/L OP,對菌株到達生長停滯期之最高生長量及μ沒有顯著影響,而當低濃度succinate存在下(1~50 mg/L),加入OP則菌株最高生長量及μ隨著OP濃度上升而提高,但是當OP濃度高達5000 mg/L,則會使菌株最高生長量及μ降低。當兩種碳源組合為succinate加NP時,在1~5000 mg/L succinate存在下,菌株最高生長量及μ隨著NP濃度上升而提高,但是當NP濃度超過500 mg/L,則會使菌株最高生長量及μ降低。當菌株利用NP和OP兩種碳源的組合時,菌株最高生長量及μ均隨著NP及OP濃度上升而提高,但當OP濃度超過2500 mg/L以及NP濃度超過500 mg/L則會使菌株最高生長量及μ降低。其後利用動力學模式模擬生長情形,其結果顯示當利用succinate、NP為單一碳源時,較符合Monod equation 模式,OP為單一碳源則較符合Haldance-Andrews模式(高濃度基質抑制性),在雙碳源部份,succinate + NP組合及succinate + OP組合,在特定濃度內,較符合雙基質無相互作用模式(Two substrate no-interaction model),而OP + NP組合在本研究中並無與模式相符合之結果,因而顯示,本研究所面對之化合物與一般單環芳香族化合物,如甲苯等,有不同之生長競爭與抑制模式,其確切生長模式,有待更進一步探討。
本研究第二部分為對可能分解OP之酵素做初步研究,經液相層析質譜儀分析P. putida TX2之代謝產物,之前發現菌株在分解OP或NP時,偵測到烷基鄰苯二酚(Octylcatechol, OC)的生成,若再經由開苯環酵素開環,如catechol dioxygenase,則可進而被菌株利用生長。以來自P. putida mt-2之catechol 2,3-dioxygenase (C23O)所製作的抗體,經西方墨點法,分析P. putida TX2中C23O的表現;當P. putida TX2培養於0.5% succinate、0.5% OPEOn、0.005% OP、0.005% NP為唯一碳源時,皆偵測出兩種C23O (分子量分別為35 kDa及48 kDa),進ㄧ步分析生長於不同碳源之菌體粗萃取液中之C23O酵素最高之活性;若以succinate為碳源在細胞粗萃取液之C23O對catechol之活性最高(每毫克細胞粗萃取液之蛋白質中,活性為20.1mU),以OP為碳源時,對4-t-butylcatechol (4-t-BC)及4-t-octylcatechol (4-t-OC)有最高活性,其值同為5.0 mU/mg,若以NP為碳源生長,細菌粗萃液中之C23O對4-t-BC及4-t-OC具最高活性 (4.3 mU /mg),推知當P. putida TX2培養於OP及NP時,菌體內被誘導出對含有中鏈和長鏈alkyl phenol之環境荷爾蒙具高專一性的開環酵素。
摘要(英) Alkylphenyl polyethoxylates (APEOn) are non-ionic surfactants extensively used in the industrial, agricultural and household activities. Alkylphenyls including nonylphenol and octylphenol are metabolites from APEOn. They have been demonstrated as estrogenic-like environmental hormones, which are dangerous to human health and ecology. The metabolism of APEOn and AP in human is still unclear. The biodegradation of these surfactants in the environment and waste water treatment plant is mainly by bacteria. In this study, two bacterial strains were isolated and grown on octylphenol (OP) as sole carbon source. Using breath printing and 16S rDNA sequence analysis, two bacterial strains were identified as Pseudomonas rhizosphaerae and Methylobacterium organophilum. The growth rate on OP among a total of four isolates (two were previously isolates, P. putida TX2 and Pseudomonas sp. OP1) were compared. P. putida TX2 was the fastest grower on 0.005% OP. P. putida TX2 was previously isolated from a microcosm composed of made by farm soil after the exogenous addition of OPEOn for 2 months. The strain was shown to have a novel activity to grow on a wide range (0.05~20%) of OPEOn and the specific growth rate is 0.5 h-1 in 0.5% OPEOn. The strain also used 0.002% OP as sole carbon source, and the specific growth rate is 0.47 d-1.
For growth kinetics analysis, P. putida TX2 was grown in different concentrations of succinate, octylphenol and nonylphenol (NP) as a single carbon source or combination of either two, to obtain the maximum specific growth rate (μmax), half-velocity constant (KS) and substrate inhibition constant (KI). The maximum specific growth rates (μmax) are 0.86, 0.086 and 0.021 hr-1 on succinate, OP and NP, respectively. The half-velocity constants (KS) are 155.4, 80.4, and 122.0, respectively. When P. putida TX2 was grown on 100~5000 mg/L succinate plus 10~2500 mg/L OP, OP has no effect on the specific growth rate and final growth (Using OD600 from stationary phase). As OP concentration increased, the final growth and μ were also increased in the media containing 1~50 mg/L succinate. However, the specific growth rate and final growth were decreased when the OP concentration was up to 5000 mg/L. When 1~5000 mg/L succinate included in the medium, the specific growth rate and final growth of P. putida TX2 were increased according to NP concentration increasing. The specific growth rate and final growth were decreased when the NP concentration is up to than 500 mg/L. When the strain used combination of OP and NP as carbon sources, the specific growth rate and final growth were increased as NP and OP concentration increasing, but it has decreased on the specific growth rate and the final growth when the NP concentration higher than 2500 mg/L and OP concentration higher than 500 mg/L. Using the models of enzyme kinetics to study bacterial growth, succinate or NP as a single carbon source, is consistent with the Monod model and OP is with the Haldane model (inhibition resulted in higher substrate concentrations). Combination of two carbon sources, succinate plus NP or succinate plus OP, under particular concentrations, two substrates-no interaction model is applied. But there is no model to fit the results from OP plus NP data. Therefore, OP and NP are not the same as other aromatic compounds like toluene in terms of growth competition or inhibition model. Their propriate growth model remains to be further studied.
From the LC-MS analysis of the whole-cell transformation products by P. putida TX2, OP is likely to form octylcatechol (OC) and Aromatic ring-cleaved metabolites. Therefore the degraded products can be used by P. putida TX2 for growth. By using antibody against catechol 2,3-dioxygenase (C23O) from P. putida mt-2 in a western blotting experiment, two C23O-like enzymes (35 kDa and 48 kDa) were detected in the crude extract of P. putida TX2 grown on the individual carbone source (0.5% succinate, 0.5% OPEOn, 0.005% OP or 0.005% NP). The activity of catechol 2,3-dioxygenase in the crude extracts of strain TX2 were analyzed when the cells were cultivated from different carbon sources. The C23O had the highest activity (20.1 mU per mg of protein in crude extract grown from succinate when catechol is the substrate . When P. putida TX2 is grown in OP or NP as sole carbon source, C23Os from the two crude extracts all have the highest activities to 4-t-butylcatechol and 4-t-octylcatechol (5.0 and 4.3 mU/mg, respectively). It indicates that the aromatic ring-cleavage enzyme(s) which are more specific to medium and long chain alkylphenol compounds are induced in P. putida TX2 for the catabolism of OP.
關鍵字(中) ★ 環境賀爾蒙
★ 壬基苯酚
★ 辛基苯酚
★ 生長動力學
★ 鄰苯二酚加氧酵素
關鍵字(英) ★ Pseudomonas putida TX2
★ growth kinetics
★ C23O
★ catechol 2
★ octylphenol
★ 3-dioxygenas
★ nonylphenol
論文目次 目錄……………………………………………………………………Ⅰ
圖目錄…………………………………………………………………Ⅴ
表目錄…………………………………………………………………Ⅷ
附錄目錄………………………………………………………………………Ⅸ
壹、緒論…………………………………………………………………1
1-1前言-研究背景與目的………………………………………………1
1-2文獻回顧……………………………………………………………3
1-2-1環境荷爾蒙………………………………………………………3
1-2-2烷基苯酚(AP)……………………………………………………3
1-2-2-1生物及生態之影響……………………………………………3
1-2-2-2 結構與物化性質………………………………………………5
1-2-2-3來源及含量(工業污染途徑)…………………………………6
1-2-2-4 世界各地使用規範限制………………………………………7
1-2-3烷基苯酚(AP)代謝………………………………………………7
1-2-3-1真核(真菌)……………………………………………………7
1-2-3-2真核(水生生物)………………………………………………8
1-2-3-3真核(哺乳類)…………………………………………………8
1-2-3-4原核……………………………………………………………9
1-2-3-5非生物性分解…………………………………………………10
1-2-4長鏈AP分解菌背景………………………………………………10
1-2-5長鏈AP苯環切割酵素……………………………………………11
1-2-5-1酵素背景………………………………………………………11
1-2-5-2酵素作用機制…………………………………………………12
1-2-6單細胞生物生長動力學…………………………………………12
1-3研究架構……………………………………………………………16
貳、材料與方法………………………………………………………17
2-1細菌培養篩選………………………………………………………17
2-1-1菌株………………………………………………………………17
2-1-2培養………………………………………………………………17
2-2菌株鑑定……………………………………………………………18
2-2-1革蘭氏染色………………………………………………………18
2-2-2 Cytochome oxidase測試………………………………………18
2-2-3菌株鑑定-呼吸指紋……………………………………………18
2-2-4菌株鑑定-16S rDNA序列………………………………………19
2-3細菌生長動力分析…………………………………………………20
2-3-1碳源………………………………………………………………20
2-3-2生長條件…………………………………………………………20
2-3-3生長偵測…………………………………………………………20
2-3-4比生長速率及其相關參數計算…………………………………21
2-3-5單一碳源生長動力模擬分析……………………………………22
2-3-6雙碳源生長動力模擬分析………………………………………22
2-4酵素活性分析………………………………………………………23
2-4-1 細胞粗萃取液製備……………………………………………23
2-4-2蛋白質濃度測定…………………………………………………23
2-4-3測定條件…………………………………………………………24
2-5西方墨點法…………………………………………………………24
2-5-1聚丙烯醯胺膠體之膠體鑄造……………………………………24
2-5-2將蛋白質轉至PVDF膜……………………………………………25
2-5-3 使用一次及二次抗體…………………………………………25
2-6 膠體活性染色……………………………………………………26
2-7 化學藥品…………………………………………………………26
2-8 實驗儀器…………………………………………………………27
叁、結果………………………………………………………………28
3-1 OP生長菌分離與鑑定……………………………………………28
3-1-1 OP生長菌分離…………………………………………………28
3-1-2菌種鑑定…………………………………………………………28
3-1-3本研究所篩出之分解菌與烷基苯酚分解菌群親源分析………29
3-1-4以OP為碳源之優勢分解菌評估…………………………………29
3-2生長動力分析………………………………………………………30
3-2-1 P. putida TX2生長動力分析…………………………………30
3-2-1-1單一碳源(succinate)………………………………………30
3-2-1-2 單一碳源(NP)………………………………………………31
3-2-1-3 單一碳源(OP)………………………………………………31
3-2-2雙碳源(OP + succinate)之生長動力分析……………………32
3-2-3雙碳源(NP + succinate)之生長動力分析……………………34
3-2-4雙碳源(OP + NP)之生長動力分析……………………………36
3-3 Catechol 2-3 dioxygenase (C23O)酵素表現…………………38
3-3-1西方墨點法偵測…………………………………………………38
3-3-2受質活性偵測法偵測……………………………………………39
3-3-3酵素活性偵測法偵測……………………………………………40
肆、討論………………………………………………………………42
4-1 OP分解菌之分離與鑑定…………………………………………42
4-1-1分離與鑑定………………………………………………………42
4-1-2選擇優勢菌株……………………………………………………43
4-2生長動力分析……………………………………………………43
4-2-1 Pseudomonas putida TX2培養於單碳源之OD600,max 、μ…43
4-2-2單碳源動力方程式之模擬參數μmax、Ks與模擬可適用濃度範圍………………………………………………………………………44
4-2-3比較Pseudomonas putida培養於單碳源之OD600,max、μmax、Ks………………………………………………………………………45
4-2-4比較Pseudomonas屬培養於單碳源之OD600,max、μmax、Ks…48
4-2-5 P. putida培養於雙碳源之OD600,max………………………48
4-2-6 P. putida培養於雙碳源之比生長速率μ………………………………………50
4-2-7 OP + succinate之雙碳源模式的回歸分析…………………52
4-2-8 NP + succinate之雙碳源模式的回歸分析…………………52
4-2-9 NP + OP之雙碳源模式的回歸分析……………………………53
4-2-10 P. putida 培養於雙碳源之μmax比較………………………53
4-2-11其他文獻用利用雙碳源模式之回歸分析……………………54
4-3 C23O開環酵素之表現分析………………………………………54
4-4 P. putida TX2利用NP及OP可能代謝路徑………………………57
伍、結論與建議………………………………………………………58
陸、參考文獻…………………………………………………………60
柒、圖…………………………………………………………………67
捌、表…………………………………………………………………133
玖、附錄、……………………………………………………………146
參考文獻 毛義方 (2007) 環境賀爾蒙健康危害及毒性評估研討會論文集。
宋秉育 (2004) 辛基苯酚之分解、分解菌和生物復育之菌相研究。國立中央大學生命科學研究所碩士論文。.
梁涵堃 (2001) 鄰苯二酚加氧酵素的熱穩定性提昇研究。國立中央大學生命科學研究所碩士論文。
陳錫金 (2005) 界面活性劑 octylphenol polyethoxylates生物降解與復育之研究。國立中央大學環境工程研究所博士論文。
楊嘉蓁 (2001) Triton X-100分解菌之分離與分解酵素之特性研究。國立中央大學生命科學研究所碩士論文。.
謝孝正 (2004) Pseudomonas putida TX2 分解辛基苯酚聚氧乙烯醇及其雌激素活性代謝物之研究。國立中央大學生命科學研究所碩士論文。
Arukwe, A., Thibaut, R., Ingebrigtsen, K., Celius, T., Goksoyr, A. & Cravedi, J. (2000) In vivo and in vitro metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar). Aquat Toxicol 49(4), 289-304.
Bjoerntorp, P., Ells, H.A. & Bradford, R.H. (1964) Albumin Antagonism of Fatty Acid Effects on Oxidation and Phosphorylation Reactions in Rat Liver Mitochondria. J Biol Chem 239, 339-44.
Bochner, B.S., MacGlashan, D.W., Jr., Marcotte, G.V. & Schleimer, R.P. (1989) IgE-dependent regulation of human basophil adherence to vascular endothelium. J Immunol 142(9), 3180-6.
Bordel, S., Munoz, R., Diaz, L.F. & Villaverde, S. (2007) New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl Microbiol Biotechnol 74(4), 857-66.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-54.
Chapin, R.E., Delaney, J., Wang, Y., Lanning, L., Davis, B., Collins, B., Mintz, N. & Wolfe, G. (1999) The effects of 4-nonylphenol in rats: a multigeneration reproduction study. Toxicol Sci 52(1), 80-91.
Charuk, M.H., Grey, A.A. & Reithmeier, R.A. (1998) Identification of the synthetic surfactant nonylphenol ethoxylate: a P-glycoprotein substrate in human urine. Am J Physiol 274(6 Pt 2), F1127-39.
Chen, H.J., Guo, G.L., Tseng, D.H., Cheng, C.L. & Huang, S.L. (2006) Growth factors, kinetics and biodegradation mechanism associated with Pseudomonas nitroreducens TX1 grown on octylphenol polyethoxylates. J Environ Manage 80(4), 279-86.
Chen, H.J., Tseng, D.H. & Huang, S.L. (2005) Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioresour Technol 96(13), 1483-91.
Cheng, C.Y. & Ding, W.H. (2002) Determination of nonylphenol polyethoxylates in household detergents by high-performance liquid chromatography. J Chromatogr A 968(1-2), 143-50.
Coldham, N.G., Sivapathasundaram, S., Dave, M., Ashfield, L.A., Pottinger, T.G., Goodall, C. & Sauer, M.J. (1998) Biotransformation, tissue distribution, and persistence of 4-nonylphenol residues in juvenile rainbow trout (Oncorhynchus mykiss). Drug Metab Dispos 26(4), 347-54.
Corti, S., Chevalier, J. & Cremieux, A. (1995) Intracellular accumulation of norfloxacin in Mycobacterium smegmatis. Antimicrob Agents Chemother 39(11), 2466-71.
Corvini, P.F., Hollender, J., Ji, R., Schumacher, S., Prell, J., Hommes, G., Priefer, U., Vinken, R. & Schaffer, A. (2006) The degradation of alpha-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism. Appl Microbiol Biotechnol 70(1), 114-22.
Corvini, P.F., Meesters, R., Mundt, M., Schaffer, A., Schmidt, B., Schroder, H.F., Verstraete, W., Vinken, R. & Hollender, J. (2007) Contribution to the Detection and Identification of Oxidation Metabolites of Nonylphenol in Sphingomonas sp. strain TTNP3. Biodegradation 18(2), 233-45.
Corvini, P.F., Meesters, R.J., Schaffer, A., Schroder, H.F., Vinken, R. & Hollender, J. (2004) Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Appl Environ Microbiol 70(11), 6897-900.
Daidoji, T., Inoue, H., Kato, S. & Yokota, H. (2003) Glucuronidation and excretion of nonylphenol in perfused rat liver. Drug Metab Dispos 31(8), 993-8.
Daidoji, T., Ozawa, M., Sakamoto, H., Sako, T., Inoue, H., Kurihara, R., Hashimoto, S. & Yokota, H. (2006) Slow elimination of nonylphenol from rat intestine. Drug Metab Dispos 34(1), 184-90.
Gabriel, F.L., Giger, W., Guenther, K. & Kohler, H.P. (2005a) Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Appl Environ Microbiol 71(3), 1123-9.
Gabriel, F.L., Heidlberger, A., Rentsch, D., Giger, W., Guenther, K. & Kohler, H.P. (2005b) A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram: ipso-hydroxylation and intramolecular rearrangement. J Biol Chem 280(16), 15526-33.
Gibson, D.T., Cruden, D.L., Haddock, J.D., Zylstra, G.J. & Brand, J.M. (1993) Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707. J Bacteriol 175(14), 4561-4.
Haddad, S., Charest-Tardif, G., Tardif, R. & Krishnan, K. (2000) Validation of a physiological modeling framework for simulating the toxicokinetics of chemicals in mixtures. Toxicol Appl Pharmacol 167(3), 199-209.
Haldane, F.D. (1988) Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly". Phys Rev Lett 61(18), 2015-2018.
Harayama, S., Kok, M. & Neidle, E.L. (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46, 565-601.
Hopper, D.J. & Cottrell, L. (2003) Alkylphenol biotransformations catalyzed by 4-ethylphenol methylenehydroxylase. Appl Environ Microbiol 69(6), 3650-2.
Inoue, H., Sawada, M., Ryo, A., Tanahashi, H., Wakatsuki, T., Hada, A., Kondoh, N., Nakagaki, K., Takahashi, K., Suzumura, A., Yamamoto, M. & Tabira, T. (1999) Serial analysis of gene expression in a microglial cell line. Glia 28(3), 265-71.
Jeong, J.J., Kim, J.H., Kim, C.K., Hwang, I. & Lee, K. (2003) 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149(Pt 11), 3265-77.
John, D.M. & White, G.F. (1998) Mechanism for biotransformation of nonylphenol polyethoxylates to Xenoestrogens in Pseudomonas putida. J Bacteriol 180(17), 4332-8.
Juang, R.S. & Tsai, S.Y. (2006) Enhanced biodegradation of mixed phenol and sodium salicylate by Pseudomonas putida in membrane contactors. Water Res 40(19), 3517-26.
Junghanns, C., Moeder, M., Krauss, G., Martin, C. & Schlosser, D. (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151(Pt 1), 45-57.
Karley, A.J., Powell, S.I. & Davies, J.M. (1997) Effect of nonylphenol on growth of Neurospora crassa and Candida albicans. Appl Environ Microbiol 63(4), 1312-7.
Kim, D.J., Choi, J.W., Choi, N.C., Mahendran, B. & Lee, C.E. (2005) Modeling of growth kinetics for Pseudomonas spp. during benzene degradation. Appl Microbiol Biotechnol 69(4), 456-62.
Kita, A., Kita, S., Fujisawa, I., Inaka, K., Ishida, T., Horiike, K., Nozaki, M. & Miki, K. (1999) An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Ppseudomonas putida mt-2. Structure 7(1), 25-34.
Lee, P.C. (1998) Disruption of male reproductive tract development by administration of the xenoestrogen, nonylphenol, to male newborn rats. Endocrine 9(1), 105-11.
Loomis, A.K. & Thomas, P. (2000) Effects of estrogens and xenoestrogens on androgen production by Atlantic croaker testes in vitro: evidence for a nongenomic action mediated by an estrogen membrane receptor. Biol Reprod 62(4), 995-1004.
Mazellier, P. & Leverd, J. (2003) Transformation of 4-tert-octylphenol by UV irradiation and by an H2O2/UV process in aqueous solution. Photochem Photobiol Sci 2(9), 946-53.
Metcalfe, C.D., Metcalfe, T.L., Kiparissis, Y., Koenig, B.G., Khan, C., Hughes, R.J., Croley, T.R., March, R.E. & Potter, T. (2001) Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicol Chem 20(2), 297-308.
Nakai, C., Hori, K., Kagamiyama, H., Nakazawa, T. & Nozaki, M. (1983) Purification, subunit structure, and partial amino acid sequence of metapyrocatechase. J Biol Chem 258(5), 2916-22.
Nimrod, A.C. & Benson, W.H. (1996) Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol 26(3), 335-64.
Ohe, T., Hirobe, M. & Mashino, T. (2000) Novel metabolic pathway of estrone and 17beta-estradiol catalyzed by cytochrome P-450. Drug Metab Dispos 28(2), 110-2.
Paganetto, G., Campi, F., Varani, K., Piffanelli, A., Giovannini, G. & Borea, P.A. (2000) Endocrine-disrupting agents on healthy human tissues. Pharmacol Toxicol 86(1), 24-9.
Pedersen, R.T. & Hill, E.M. (2000) Identification of novel metabolites of the xenoestrogen 4-tert-octylphenol in primary rat hepatocytes. Chem Biol Interact 128(3), 189-209.
Pennisi, E. (1998) Sifting through and making sense of genome sequences. Science 280(5370), 1692-3.
Reardon, K.F., Mosteller, D.C. & Bull Rogers, J.D. (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69(4), 385-400.
Reichlin, F. & Kohler, H.P. (1994) Pseudomonas sp. strain HBP1 Prp degrades 2-isopropylphenol (ortho-cumenol) via meta cleavage. Appl Environ Microbiol 60(12), 4587-91.
Schmidt, B., Patti, H., Niewersch, C. & Schuphan, I. (2003) Biotransformation of [ring-U-14C]4-n-nonylphenol by Agrostemma githago cell culture in a two-liquid-phase system. Biotechnol Lett 25(16), 1375-81.
Segel, G.B., Feig, S.A., Glader, B.E., Muller, A., Dutcher, P. & Nathan, D.G. (1975) Energy metabolism in human erythrocytes: the role of phosphoglycerate kinase in cation transport. Blood 46(2), 271-8.
Simkins, S. & Alexander, M. (1984) Models for mineralization kinetics with the variables of substrate concentration and population density. Appl Environ Microbiol 47(6), 1299-306.
Skakkebaek, N.E., Rajpert-De Meyts, E., Jorgensen, N., Carlsen, E., Petersen, P.M., Giwercman, A., Andersen, A.G., Jensen, T.K., Andersson, A.M. & Muller, J. (1998) Germ cell cancer and disorders of spermatogenesis: an environmental connection? Apmis 106(1), 3-11; discussion 12.
Snyder, S.A., Keith, T.L., Pierens, S.L., Snyder, E.M. & Giesy, J.P. (2001) Bioconcentration of nonylphenol in fathead minnows (Pimephales promelas). Chemosphere 44(8), 1697-702.
Soares, A., Guieysse, B., Delgado, O. & Mattiasson, B. (2003) Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol Lett 25(9), 731-8.
Sumpter, J.P. & Jobling, S. (1993) Male sexual development in "a sea of oestrogen". Lancet 342(8863), 124-5.
Sun, Z., Ramsay, J.A., Guay, M. & Ramsay, B.A. (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74(1), 69-77.
Tabira, Y., Nakai, M., Asai, D., Yakabe, Y., Tahara, Y., Shinmyozu, T., Noguchi, M., Takatsuki, M. & Shimohigashi, Y. (1999) Structural requirements of para-alkylphenols to bind to estrogen receptor. Eur J Biochem 262(1), 240-5.
Takeo, M., Prabu, S.K., Kitamura, C., Hirai, M., Takahashi, H., Kato, D. & Negoro, S. (2006) Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J Biosci Bioeng 102(4), 352-61.
Tanenbaum, D.M., Wang, Y., Williams, S.P. & Sigler, P.B. (1998) Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proc Natl Acad Sci U S A 95(11), 5998-6003.
Tanghe, T., Dhooge, W. & Verstraete, W. (1999) Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol 65(2), 746-51.
Tanghe, T., Dhooge, W. & Verstraete, W. (2000) Formation of the metabolic intermediate 2,4,4-trimethyl-2-pentanol during incubation of a Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation 11(1), 11-9.
Tanenbaum, D. M., Y. Wang, S. Williams, and P. Sigler., (1998) Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc. Natl. Acad. Sci. 95, 5998-6003.
Terpe, K., Kerkhoff, K., Pluta, E. & Jendrossek, D. (1999) Relationship between succinate transport and production of extracellular poly(3-hydroxybutyrate) depolymerase in Pseudomonas lemoignei. Appl Environ Microbiol 65(4), 1703-9.
Tsai, S.Y. & Juang, R.S. (2006) Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365. J Hazard Mater 138(1), 125-32.
Ushiba, Y., Takahara, Y. & Ohta, H. (2003) Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53(Pt 6), 2045-8.
Vangnai, A.S. & Petchkroh, W. (2007) Biodegradation of 4-chloroaniline by bacteria enriched from soil. FEMS Microbiol Lett 268(2), 209-16.
Varon, R., Havsteen, B.H., Valero, E., Molina-Alarcon, M., Garcia-Canovas, F. & Garcia-Moreno, M. (2005) Kinetic analysis of the transient phase and steady state of open multicyclic enzyme cascades. Acta Biochim Pol 52(4), 765-80.
Wallis, M.G. & Chapman, S.K. (1990) Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol. Biochem J 266(2), 605-9.
Wang, J., Xie, P. & Guo, N. (2007) Effects of nonylphenol on the growth and microcystin production of Microcystis strains. Environ Res 103(1), 70-8.
White, R., Jobling, S., Hoare, S.A., Sumpter, J.P. & Parker, M.G. (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135(1), 175-82.
White, R.S. (1992) Transformations of transference. Psychoanal Study Child 47, 329-48.
Ying, G.G., Williams, B. & Kookana, R. (2002) Environmental fate of alkylphenols and alkylphenol ethoxylates--a review. Environ Int 28(3), 215-26.
Yoon, H., Klinzing, G. & Blanch, H.W. (1977) Competition for mixed substrates by microbial populations. Biotechnol Bioeng 19(8), 1193-210.
Yuan, S.Y., Yu, C.H. & Chang, B.V. (2004) Biodegradation of nonylphenol in river sediment. Environ Pollut 127(3), 425-30.
Yu, Y.G. & Loh, K.C. (2002) Inhibition of p-cresol on aerobic biodegradation of carbazole, and sodium salicylate by Pseudomonas putida. Water Res 36(7), 1794-802.
指導教授 黃雪莉(Shir-ly Huang) 審核日期 2008-4-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明