博碩士論文 101322076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.89.116.152
姓名 王銘鴻(Ming-hung Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 隨機需求下租賃自行車佈署模式暨求解演算法之研究
相關論文
★ 橋梁檢測人力機具排班最佳化之研究★ 勤業務專責分工下消防人員每日勤務排班最佳模式之研究
★ 司機員排班作業最佳化模式之研究★ 科學園區廢水場實驗室檢驗員任務指派 最佳化模式之研究
★ 倉儲地坪粉光工程之最佳化模式研究★ 生下水道工程工作井佈設作業機組指派最佳化之研究
★ 急診室臨時性短期護理人力 指派最佳化之探討★ 專案監造人力調派最佳化模式研究
★ 地質鑽探工程人機作業管理最佳化研究★ 職業棒球球隊球員組合最佳化之研究
★ 鑽堡於卵礫石層施作機具調派最佳化模式之研究★ 職業安全衛生查核人員人力指派最佳化研究
★ 救災機具預置最佳化之探討★ 水電工程出工數最佳化之研究
★ 石門水庫服務台及票站人員排班最佳化之研究★ 空調附屬設備機組維護保養排程最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於人口快速增加、科技不斷創新與工業活動蓬勃發展,促使溫室效應增強造成全球平均溫度的上升。因此人們環保意識提升,各國政府除推行大眾運輸政策外,亦發展租賃自行車之共享系統,可提供民眾最後一哩路亦能達到節能減碳之效果。而目前租賃自行車之佈署仍以人工經驗方式,未能以系統最佳化觀點進行佈署,除導致資源浪費,更造成服務率不佳。且實際營運時隨機租賃需求造成的擾動極大,使得佈署結果未能達最佳性。有鑑於此,本研究針對隨機需求下以服務最大化與利潤最大化等目標,建構兩個租賃自行車佈署模式,期能給予營運者決策佈署車輛之參考,並提高服務率與營運利潤。
本研究藉由時空網路流動技巧建立二個隨機性需求自行車佈署模式,以定式租賃自行車流動之情形。本研究並修改隨機性需求為平均需求,建立其對應之確定性需求自行車佈署模式,此等模式皆為NP-hard問題。於求解方法上,兩個確定性模式皆可以C++程式語言配合數學規劃CPLEX進行模式求解,本研究兩個隨機性模式問題規模皆為龐大,無法直接使用數學規劃軟體求解。緣此,本研究發展一啟發式演算法有效地進行求解問題,並利用隨機性問題相關理論以評估模式之優劣與演算法之實用績效。最後,參考國內一租賃自行車業者的營運資料及合理假設產生範例,進行範例測試並對不同參數進行敏感度分析,測試結果顯示各模式與演算法均表現良好,可提供租賃自行車業者作為佈署決策之參考。
摘要(英) Due to the population growth and economic progress, the greenhouse effect is getting worse. In order to protect the environment, governments push not only the public transport policy, but also the bike-sharing system. In practice, the decision maker is used to deploy the rental bicycles based on his/her experience, which lakes the perspective of system optimization, in addition to wasting of resources. In actual operations, the demand is wildly changed leading to the deployment of rental bicycles that loses its optimality. Therefore, this research considers the stochastic demand occurring in actual operations, with the aim of maximizing profits and service volume, to construct two rental bike deployment models. With thesse models, the operator can effectively deploy the retinal bikes and improve the level of service and operating profits.
In this research, the time-space network flow technique is used to show the potential movement of rental bikes under stochastic demand and to construct two stochastic demand and deployment models. We further consider the average demand to construct two deterministic demand models. These four models are formulated as integer multiple-commodity network flow problems, which are characterized as NP-hard. We utilize C computer language, coupled with the CPLEX mathematics programming solver, to solve the two deterministic models. For the two stochastic models, since their problem sizes are too huge to be directly solved by using mathematical programming software. Therefore, we developed a solution algorithm to efficiently solve the two stochastic models. We also utilized EVPI and VSS to evaluate the performance of these two stochastic models. Finally, we performed a case study using data from a bicycle rental corporation. The test results show that the proposed models and solution algorithm could be useful for deploying the rental bicycles.
關鍵字(中) ★ 租賃自行車
★ 佈署
★ 隨機需求
★ 時空網路
★ 啟發解法
★ 多重貨物網路流動問題
關鍵字(英) ★ Bicycle Sharing System
★ Deployment
★ Stochastic demand
★ Time-space network
★ Heuristic
★ Multiple commodity network flow problem
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 2
1.3 研究方法與流程 3
第二章 文獻回顧 5
2.1 國內外自行車租賃現況 5
2.2 自行車租賃相關文獻 7
2.2.1 自行車相關文獻 7
2.2.2 車隊、船隊、機隊佈署設計 11
2.3 時空網路的相關文獻 13
2.4 隨機擾動之相關理論與文獻 14
2.4.1 隨機性問題相關理論 14
2.4.2 隨機擾動相關文獻 17
2.5 文獻評析 19
第三章 模式構建 20
3.1 自行車規劃模式 20
3.1.1 模式基本假設或給定資訊 21
3.1.2 隨機性模式之時空網路 24
3.1.3 確定性模式之構建 31
3.1.4 確定性需求之自行車租賃佈署求解方法 33
3.2 模式驗證 33
3.2.1 確定性模式驗證 33
3.2.2 隨機性模式驗證 35
3.3 模式求解方法 38
3.3.1 隨機性需求之自行車租賃佈署求解方法 38
3.3.2 隨機性模式之演算法說明 40
3.3.3 模式評估方法 44
3.4 模式應用 45
3.5 小結 45

第四章 範例測試 46
4.1 資料輸入 46
4.1.1 自行車佈署規劃資料 46
4.1.2 隨機性模式規劃資料 47
4.2 模式發展 48
4.2.1 問題規模 49
4.2.2 模式輸入資料 51
4.3 電腦演算環境與設定 51
4.3.1 電腦演算環境 51
4.3.2 相關程式(參數)設定 51
4.3.3 模式輸出資料 53
4.4 測試結果與分析 53
4.4.1 隨機情境數目 53
4.4.2 隨性需求下自行車佈署營運模式結果 55
4.4.3 確定性需求下自行車佈署營運模式結果 56
4.4.4 模式結果分析 57
4.5 敏感度分析 58
4.5.1 隨機需求產生之平均值敏感度分析 58
4.5.2 隨機需求產生之標準差敏感度分析 61
4.5.3 車隊規模敏感度分析 63
4.5.4 懲罰值及管理費用敏感度分析 66
4.6 小結 68
第五章 結論與建議 69
5.1 結論 69
5.2 建議 70
5.3 貢獻 71
參考文獻 72
附錄 76
附錄一 CPLEX Callable Library Code 76
附錄二 隨機情境模擬次數測試結果 77
參考文獻 1. 王俊偉,「以系統模擬探討公共自行車租借系統」,碩士論文,國立成功大學工業與資訊管理研究所(2011)。
2. 吳胤玲,「公共自行車租借站設置問題之研究」,碩士論文,國立雲林科技大學全球運籌管理研究所(2010)。
3. 苑鳳萍,「客運車輛擾動下調度系統之研究」,碩士論文,國立交通大學運輸工程與管理研究所(2001)。
4. 洪菁蓬,「公共自行車租借系統之最佳租借站位址設置及車輛運補策略之研究」,碩士論文,成功大學工業與資訊管理研究所(2011)。
5. 張勻威,「自行車租賃佈署暨調度最佳化之研究」,碩士論文,國立中央大學土木工程學系(2011)。
6. 張立蓁,「都會區公共自行車租借系統之設計與營運方式研究」,碩士論文,國立成功大學工業與資訊管理研究所(2010)。
7. 楊大輝、李綺容(2007),「需求變動下之航空貨運網路規劃」,運輸學刊,第十九卷,第二期,第169-189頁。
8. 楊瑞宇,「穩健公共自行車租用系統車輛配置模式」,碩士論文,國立臺北科技大學資訊與運籌管理研究所(2012)。
9. 廖敏婷,「考慮需求比例及暫時人力配置之公共自行車租借系統管理策略研究」,碩士論文,國立成功大學工業與資訊管理研究所(2012)。
10. 盧華安、徐育彰,「定期貨櫃航線選擇與船隊佈署之研究」,運輸計劃季刊,第三十卷,第三期,第577- 601頁(2001)。
11. 謝昉叡,「自行車租賃系統佈署調度暨選址最佳化之研究」,碩士論文,國立中央大學土木工程學系(2011)。
12. 顏上堯、陳佳宏、曹智翔,「短期需求擾動下動態醫療物資輸配送之研究」,運輸計劃季刊,第三十八卷,第三期,第297- 322頁(2009)。
13. Allen-Munley, C., Daniel, J. and Dhar, S., “Logistic Model for Rating Urban Bicycle Route Safety,” Transportation Research Record, No. 1878, pp. 107–115 (2004).
14. Akgün, I. and Tansel, B.Ç., “Optimization of transportation requirements in the deployment of military units,” Computers & Operations Research, Vol. 34, pp. 1158-1176 (2007).
15. Barnes, G. and Krizek, K., “Estimating Bicycling Demand,” Transportation Research Record, Issue 1939, pp. 45-51 (2005).

16. Birge, J. R., “Solution Methods for Stochastic Dynamic Linear Programs,” Technical Report SOL, pp. 29-80 (1980).
17. Chen, C.-H., Yan, S. and Chen, M., “Short-term manpower planning for MRT carriage maintenance under mixed deterministic and stochastic demands,” Annals of Operations Research, Vol. 181, Issue 1, pp. 67-88 (2010).
18. Dell′Amico, M., Hadjicostantinou, E., Iori, M. and Novellani, S., “The bike sharing rebalancing problem: Mathematical formulations and benchmark instances,” Omega, Vol. 45, pp. 7-19 (2014).
19. Diana, M., Dessouky, M. M. and Xia, N., “A model for the fleet sizing of demand responsive transportation services with time windows,” Transportation Research Part B, Vol. 40, Issue 8, pp. 651-666 (2006).
20. Dill, J. and Voros, K., “Factors Affecting Bicycle Demand Initial Survey Findings from the Portland, Oregon, Region,” Transportation Research Record, Issue 2031, pp. 9-17 (2007).
21. Garey, M. R. and Johnson, D. S. (1979). Computers and intractability : a guide to the theory of NP-completeness. San Francisco: W. H. Freeman.
22. Gelareh, S. and Meng, Q., “A novel modeling approach for the fleet deployment problem within a short-term planning horizon,” Transportation Research Part E, Vol. 46, Issue 1, pp. 76-89 (2010).
23. Li, Z. and Tao, F., “On determining optimal fleet size and vehicle transfer policy for a car rental company,” Computers and Operations Research, Vol. 37, Issue 2, pp. 341-350 (2010).
24. Lin, J.-R. and Yang T.-H., “Strategic design of public bicycle sharing systems with service level constraints,” Transportation Research Part E, Vol. 47, Issue 2, pp. 284-294 (2011).
25. Lin, J.-R., Yang T.-H. and Chang Y.-C., “A hub location inventory model for bicycle sharing system design: Formulation and solution,” Computers & Industrial Engineering, Vol. 65, Issue 1, pp.77-86 (2013).
26. Martens, K., “Promoting bike-and-ride: The Dutch experience,” Transportation Research Part A, Vol. 41, Issue 4, pp. 326-338 (2007).
27. Martens, K., “The bicycle as a feedering mode: experiences from three European countries,” Transportation Research Part D, Vol. 9, Issue 4, pp. 281-294 (2004).

28. Martinez, L. M., Caetano, L., Eiró, T. and Cruz, F., “An optimisation algorithm to establish the location of stations of a mixed fleet biking system: an application to the city of Lisbon,” Procedia - Social and Behavioral Sciences, Vol. 54, pp. 513 – 524 (2012).
29. McCahill, C. and Garrick, N. W., “The applicability of space syntax to bicycle facility planning,” Transportation Research Record, Issue 2074, pp. 46-51 (2008).
30. Morris, H., “Commute Rates on Urban Trails Indicators from the 2000 Census,” Transportation Research Record, Issue 1878, pp. 116–121 (2004).
31. Oum, T. H., Zhang, A. and Zhang, Y., “Optimal demand for operating lease of aircraft,” Transportation Research Part B, Vol. 34, Issue 1, pp. 17-29 (2000).
32. Pachon, J. E., Iakovou, E., Ip, C. and Aboudi, R., “A synthesis of tactical fleet planning models for the car rental industry,” IIE Transactions, Vol. 35, Issue 9, pp. 907-916 (2003).
33. Sayarshad, H., Tavassoli, S. and Zhao, F., “A multi-periodic optimization formulation for bike planning and bike utilization,” Applied Mathematical Modelling, Vol. 36, Issue 10, pp. 4944-4951 (2012).
34. Stinson, M. A. and Bhat, C. R., “Commuter Bicyclist Route Choice Analysis Using a Stated Preference Survey,” Transportation Research Record, No. 1828, pp. 107–115 (2003).
35. Stancu Minasian, I. M., Stochastic Programming with Multiple Objective Functions, Editura Academiei, Bucharest (1984).
36. Yan, S. and Shih, Y.L., “A time-space network model for work team scheduling after a major disaster,” Journal of the Chinese Institute of Engineers, Vol. 30, No. 1, pp. 63-75 (2007).
37. Yan, S. and Tang, C.H., “A heuristic approach for airport gate assignments for stochastic flight delays,” European Journal of Operational Research, Vol. 180, Issue 2, pp. 547-567 (2007).
38. Yan, S., Chen, S. C. and Chen, C. H., “Air cargo fleet routing and timetable setting with multiple on-time demands,” Transportation Research, Part E, Vol. 42, Issue 5, pp. 409-430 (2006a).
39. Yan, S., Chi, C. J. and Tang, C. H., “Inter-city bus routing and timetable setting under stochastic demands,” Transportation Research Part A, Vol. 40, pp. 572-586 (2006b).
40. Yan, S., Lin, C. K. and Chen, S. Y., “Logistical support scheduling under stochastic travel times given an emergency repair work schedule,” Computers & Industrial Engineering, Vol. 67, pp. 20-35 (2014).
41. Yan, S., Lin, J. R. and Lai, C. W., “The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands,” Transportation Research, Part E, Vol. 53, pp. 34-48 (2013).

42. Yan, S., Tang, C. H. and Chen, C. H., “Reassignments of Common-use Check-in Counters following Airport Incidents,” Journal of the Operational Research Society, Vol. 59, pp. 1100-1108 (2008a).
43. Yan, S., Tang, C. H. and Fu T. C., “An airline scheduling model and solution algorithms under stochastic demands,” European Journal of Operational Research, Vol. 190, 1, pp. 22-39 (2008b).
44. Yan, S., Tang, C. H. and Hou, Y. Z., “Airport gate reassignments considering deterministic and stochastic flight departure/arrival times,” Journal of Advanced Transportation, Vol. 45, pp. 304-320 (2011).
45. Zolnik, E. J. and Cromley, E. K., “Poisson Multilevel Methodology of Bicycle Levels of Service for Road Networks,” Transportation Research Record, Issue 2031, pp. 1-8 (2007).
指導教授 顏上堯(Shang-yao Yan) 審核日期 2014-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明