參考文獻 |
[1] F. A. Mcclintock , A Criterion For Ductile Fracture By The Growth Of Holes. J. Appl. Mech. 35(1968), 363-371.
[2] A. Needleman, Void Growth In An Elastic-Plastic Medium. J. Appl. Mech. 39(1972) 964-970.
[3] A. L. Gurson, Continuum Theory Of Ductile Rupture By Void Nucleation And Growth: Part I—Yield Criteria And Flow Rules For Porous Ductile Media. J. Energ. Matl. Tech. , Trans.Asme,(1977) 2-15.
[4] U. Stigh, Effects Of Interacting Cavities On Damage Parameter. J. Appl. Mech. 53(1986), 485-490.
[5] A. N. Gent ,Cavitation In Rubber: A Cautionary Tale. Rubber Chem. Tech., 63(1990) 49-53.
[6] E. Bayraktar , Et. Al., Damage Mechanisms In Natural (Nr) And Synthetic Rubber (Sbr): Nucleation, Growth And Instability Of The Cavitation. Fatique Fract. Engrg. Mater. Struct. , 31(2008)184-196.
[7] C. Fong, Cavitation Criterion For Rubber Materials: A Review Of Void-Growth Models. J. Polymer Sci.: Part B: Polymer Phys., 39(2001)2081-2096.
[8] J.M.Ball, Discontinous Equilibrium Solutions And Cavitation In Nonlinear Elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
[9] C.O. Horgan And D.A. Polignone , Cavition In Nonlinearly Elastic Solids: Areview. Appl. Mech. Rev . ,48(1995)471-485.
[10] J.Sivaloganathan And S.J.Spector, On Cavitation, Configurational Forces And Implications For Fracture In A Nonlinearly Elastic Material. J. Of Elasticity, 67(2002)25-49.
[11] C.A.Stuart, Radially Symmetric Cavitation For Hyperelastic Materials, Ann.Inst.Henri Poincare-Analyse Non Lineare, 2 (1985) 33-66.
[12] C.O.Horgan And R.Abeyaratne, A Bifurcation Problem For A Compressible Nonlinearly Elastic Medium: Growth Of A Micro-Void. J.Elasticity, 16 (1986) 189-200.
[13] F.Meynard, Existence And Nonexistence Results On The Radially Symmetric Cavitation Problem. Quart.Appl.Math. 50 (1992) 201-226.
[14] C.A.Stuart, Estimating The Critical Radius For Radially Symmetric Cavitation, Quart.Appl.Math., 51 (1993) 251-263.
[15] S.Biwa, Critical Stretch For Formation Of A Cylindrical Void In A Compressible Hyperelastic Material. Int.J.Non-Linear Mech., 30 (1995) 899-914.
[16] S.Biwa, E.Matsumoto And T.Shibata, Effect Of Constitutive Parameters On Formation Of A Spherical Void In A Compressible Non-Linear Elastic Material. J.Appl.Mech. 61 (1994) 395-401.
[17] H.C.Lei(李顯智) And H.W.Chang, Void Formation And Growth In A Class Of Compressible Solids. J.Engrg.Math., 30 (1996) 693-706.
[18] R. Cortes, The Growth Of Microvoids Under Intense Dynamic Loading. Int. J. Solids Struct. 29(1992)1339-1350.
[19] H.S. Hou And R. Abeyaratne, Cavitation In Elastic And Elastic-Plastic Solids.. J. Mech. Phys. Solids, 40 (1992) 571-592.
[20] M. Danielsson, D.M. Parks And M.C. Boyce, Constitutive Modeling Of Porous Hyperelastic Material. Mech. Mater., 36(2004)347-358.
[21] J. Li, D. Mayau And F. Song, A Constitutive Model For Cavitation And Cavity Growth In Rubber-Like Materials Under Arbitrary Tri-Axial Loading. Int. J. Solids Struct., 44(2007)6080-6100.
[22] J. Li, D. Mayau And V. Lagarrigue, A Constitutive Model Dealing With Damage Due To Cavity Growth And The Mullins Effect In Rubber-Like Materials Under Triaxial Loading. J. Mech. Phys. Solids, 56(2008)953-973.
[23] R.W. Ogden, On Constitutive Relations For Elastic And Plastic Materials. Ph.D. Dissertation, Cambridge University, 1970.
[24] R.W. Ogden, Large Deformation Isotropic Elasticity I: On The Correlation Of Theory And Experiment For Incompressible Rubberlike Solids. Proc. R. Soc.London, Series A, 326(1972)565-584.
[25] R.W. Ogden, ‘Elastic Deformations Of Rubberlike Solids’ In Mechanics Of Solids, The Rodney Hill 60th Anniversary Volume (Eds. H.G. Hopkins And M.J. Sewell). Pergamon Press, Pp. 499-537, 1982.
[26] R.W. Ogden, “Non-Linear Elastic Deformations”. Ellis Horwood Limited, Chichester, England ,1984.
[27] T.Beda,Modeling Hyperelastic Behavior Of Rubber: A Novel Invariant-Based And A Review Of Constitutive Models.J.polymer Sci.:Part B:Polymer phys.,45(2007)1713-1732.
|