博碩士論文 92342006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.135.204.43
姓名 江國輝(Kuo-hui Chiang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響
相關論文
★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例
★ 沉箱式碼頭受震反應的數值分析★ 軟土隧道襯砌應力與地盤變位之數值分析
★ 沉箱碼頭受震反應及側向位移分析★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬
★ 地理資訊系統應用於員林地區液化災損及復舊調查之研究★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制
★ 砂土層中通隧引致之地盤變位及其對既存基樁的影響★ 既存隧道周圍土壓力受鄰近新挖隧道的影響
★ 以攝影測量觀察離心土壩模型受滲流力作用之變位★ 通隧引致鄰近基樁之荷重傳遞行為
★ 潛盾施工引致之地盤沉陷案例分析★ 以離心模型試驗探討高含水量黏性背填土 加勁擋土牆之穩定性
★ 懸臂式擋土壁開挖之離心模型試驗★ 既存隧道襯砌彎矩受鄰近水平新挖隧道的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用離心模型試驗,探討於飽和砂土層中進行隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響。共進行四部分之研究,分別為單隧道開挖試驗、單隧道開挖周圍土壓力試驗、單隧道開挖對鄰旁既存單樁、群樁之影響試驗。分別探討(1)單隧道開挖引致之地盤沉陷、破壞機制與隧道穩定性;(2)不同隧道土壤漏失量下,隧道周圍地盤之土壓力變化;(3)不同的固定土壤漏失量下,於鄰近隧道旁之單樁進行樁載重試驗,探討因隧道開挖產生土壤漏失量時,單樁之荷重傳遞行為;(4)改變單樁距隧道中心之水平距離與不同樁頭工作荷載,由於隧道開挖引致周圍地盤移動,對鄰近單樁力學行為之影響;(5)改變不同樁長之群樁基礎,進行群樁載重試驗;(6)改變短群樁距隧道中心之水平距離與不同大小工作荷載,探討隧道開挖引致周圍地盤移動,對緊鄰短群樁力學行為之影響;(7)改變不同隧道深徑比與不同長群樁距隧道中心之水平距離,探討因隧道開挖引致周圍地盤移動,對鄰近既存長群樁基礎之影響。
根據研究結果,可於離心模型試驗得知飽和砂土層中隧道開挖周圍地盤變位之情況,地表沉陷量與載重因子有關,當載重因子達0.7時,地表沉陷量會急遽增加。可利用本研究推得之沉陷槽寬度參數與隧道深度之關係式,預測飽和砂土層中之地表沉陷槽寬度值大小,及可利用本研究推得之最大地表沉陷量與隧道直徑比,隨隧道深徑比與土壤漏失量之關係式,在不同隧道深徑比及不同土壤漏失量下,預估地表最大沉陷量。本研究提出了新的隧道破壞機制並與試驗結果驗證,提出隧道有效支撐壓力之評估方法,可有效的評估隧道開挖時維持隧道穩定之臨界支撐壓力與隧道頂拱上方之垂直土壓力。土壤漏失量為VL=1%與2%時,隧道周圍的有效垂直土壓力受到隧道開挖之影響,影響範圍為距隧道中心約1D之處。本研究利用離心模型試驗模擬當隧道產生土壤漏失量時對鄰近基樁進行載重試驗,試驗過程中均可使其達破壞階段,可清楚釐清基樁與隧道之互制關係,進而得到其破壞機制。通隧對鄰近既存樁基礎之影響,主要影響因素為基樁之工作載重比、基樁距離隧道中心的遠近、隧道深徑比及土壤漏失量大小。
摘要(英) In this study, a series of centrifuge model tests were performed to assess tunneling-induced ground deformations, tunnel stability and their effects on adjacent pile foundations in saturated sandy ground. Four topics have been investigated in this study, the tests of single tunneling, the redistribution of earth pressure induced by single tunneling, and the pile responses caused by single tunneling, respectively. The following topics are discussed: (1) the free-field ground deformations and tunnel stability induced by single tunneling. (2) the distribution of earth pressure around the tunnel induced by single tunneling. (3) the pile loading tests has been analyzed in the different conditions, including the ground loss and the distance between the pile and the tunnel center. (4) the load transfer mechanism of the piles has been analyzed in the different conditions, including ground losses, the load on the pile head, and the distance between the pile and the tunnel center. (5) the pile loading tests has been analyzed in the different piles length. (6) the load transfer mechanism of the short grouped piles has been analyzed in the different conditions, including ground losses, the load on the pile head, and the distance between the pile and the tunnel center. (7) the load transfer mechanism of the long grouped piles has been analyzed in the different conditions, including ground losses, the load on the pile head, and the distance between the pile and the tunnel center.
According to the test results, the ground movement behavior around tunnels embedded in sandy soils below the ground water table was investigated in a series of model tunnel tests in a centrifuge. The degree of ground movement was closely related to the load factor and increased dramatically when the load factor exceeded 0.7. The relation between i and the ratio C/D was derived by regression of the centrifuge model test data; this relation can be used to estimate the width of the surface settlement trough for a tunnel of a particular depth. The maximum surface settlement can be evaluated using the proposed relations of Smax/D and C/D ratio at various ground loss. Importantly, the proposed relations are simple and easy to use in engineering practice. A new failure mechanism was also proposed and validated by comparison with the test results. The proposed failure mechanism enables accurate prediction of two of the key quantities in the design of linings for tunnels embedded in sandy soils, namely the minimum supporting pressure needed to retain tunnel stability and the vertical soil pressure acting on the tunnel crown. When the ground loss reached 1% or 2%, the effect vertical earth pressure around the tunnel due to tunneling, the range of influence from tunnel center about 1D. A series of centrifuge model tests were performed to assess tunneling-induced ground losses and their effects on adjacent pile loading test. The testing process would simulate to failure situation, could clearly clarify the interaction relation between the piles and the tunnel, and then get the load transfer mechanism. The responses of piles caused by nearby tunneling depend mainly on the following factors such as the working load on the pile head, the horizontal distance between the pile and the center of tunnel, the cover-to-diameter of tunnel, and ground loss caused by tunneling.
關鍵字(中) ★ 隧道
★ 地盤沉陷
★ 破壞機制
★ 土壓力
★ 基樁
★ 荷重傳遞
★ 土壤漏失
★ 離心模型試驗
關鍵字(英) ★ tunnel
★ ground deformation
★ failure mechanism
★ earth pressure
★ pile
★ load transfer
★ ground loss ratio
★ centrifuge modeling tests
論文目次 中 文 摘 要Ⅰ
英 文 摘 要Ⅲ
目 錄V
表 目 錄IX
圖 目 錄Ⅹ
照 片 目 錄ⅩVII
符 號 說 明XIX

第一章 緒論 1
1-1研究動機與目的 1
1-2研究方法與架構 2
1-3論文內容 5
第二章 文獻回顧 6
2-1軟地通隧引致之地盤沉陷 6
2-1-1地盤沉陷之原因 6
2-1-2最大地表沉陷量和土壤漏失量 8
2-1-3砂土層中之離心隧道模型試驗 12
2-2隧道拱效應理論 13
2-3隧道開挖對土壓力分佈影響之相關研究 15
2-4側向土壤移動對樁基礎的影響之相關研究 18
2-4-1基樁承受側向土壓力之數值分析方法 20
2-4-2基樁承受側向土壓力之模型試驗 22
2-5軟地通隧對鄰近樁基礎影響之相關研究 25
2-6樁基礎承載力 30
2-6-1基樁之荷重傳遞機制 30
2-6-2單樁容許垂直承載力 30
2-6-3基樁間距及群樁總支承力 35
2-6-4群樁容許垂直承載力 36
2-7模擬隧道崩垮之控制方法 37
2-7-1壓力控制模擬隧道崩垮 37
2-7-2體積控制模擬隧道崩垮 38
2-8離心模型基本原理 39
2-8-1離心模型之基本相似律 39
2-8-2離心模型試驗之模型模擬 42
第三章 試驗土樣、儀器設備及試驗方法 88
3-1試驗土樣 88
3-2試驗儀器及相關設備 88
3-2-1地工離心機 88
3-2-2模型試驗箱 89
3-2-3移動式霣降機 90
3-2-4複動式氣壓缸 91
3-2-5模型隧道 91
3-2-6土壤漏失量量測設備 92
3-2-7其他量測工具 93
3-3模型計測樁與體積漏失量測儀校正 96
3-3-1模型計測樁校正 96
3-3-2隧道體積漏失量測儀校正 97
3-4單隧道開挖試驗模型製作及試體準備 98
3-4-1試體製作 98
3-4-2位移標線計埋設、模型隧道及有色砂製作 99
3-5單隧道開挖試驗方法與步驟 101
3-6土壓力分佈試驗模型製作及試體準備 103
3-7土壓力分佈試驗方法與步驟 106
3-8單樁與群樁試驗之模型製作與試體準備 109
3-9單樁與群樁之試驗方法與步驟 111
第四章 單隧道開挖試驗結果與分析 158
4-1離心模型試驗類別 158
4-2砂土單隧道開挖模擬試驗之結果與分析 160
4-2-1地表沉陷槽 160
4-2-2最大地表沉陷與隧道頂拱變形 163
4-2-3隧道穩定性與破壞機制 167
4-3單隧道開挖周圍土壓力分佈 173
4-3-1隧道周圍有效垂直土壓力分佈 174
4-3- 隧道側壁上方有效水平土壓力的分佈 176
4-3-3隧道周圍地盤破壞型態與隧道穩定分析 177
第五章 單樁試驗結果與分析 217
5-1模型試驗及試驗參數 218
5-2基樁載重試驗分析 219
5-2-1定義基樁極限承載力 220
5-2-2土壤漏失量對基樁承載力的影響 221
5-2-3基樁距隧道的遠近對基樁承載力的影響 224
5-3在鄰近隧道進行樁載重試驗對隧道襯砌的影響 225
5-4通隧對鄰近受載單基樁的影響試驗分析 227
5-4-1樁身軸力分布分析 228
5-4-2樁身表面摩擦力分析 230
5-4-3新挖隧道單樁樁尖承載力之評估方法 233
5-4-4基樁之樁頭沉陷量分析 236
5-4-5地表沉陷與樁頭沉陷的關係 237
5-4-6隧道開挖對隧道內支撐壓力的影響 239
5-4-7隧道開挖導致既存基樁荷重傳遞機制分析 240
第六章 群樁試驗結果與分析 268
6-1模型試驗及試驗參數 269
6-2短群樁與長群樁載重試驗分析 270
6-3短群樁受到隧道開挖的試驗結果分析 272
6-3-1新挖隧道對緊鄰短群樁之樁身軸向力分佈 273
6-3-2新挖隧道對鄰近短群樁之樁身彎矩分佈 277
6-3-3短群樁之樁頭沉陷量分析 278
6-4長群樁試驗結果分析 279
6-4-1新挖隧道對鄰近長群樁之樁身軸向力分佈 280
6-4-2新挖隧道對鄰近長群樁之樁身彎矩分佈 282
6-4-3長群樁之樁頭沉陷量分析 283
第七章 結論與建議 321
7-1結論 321
7-2建議 326
參考文獻 327
參考文獻 1.王繼勝、林軒、楊國榮,「潛盾工法與地表沉陷」,地工技術雜誌,第二十三期,第72-83頁(1988)。
2.李崇正、林志棟、林俊雄,「大地工程研究者之新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669頁(1994)。
3.朱旭,「潛盾施工法在國內應用之探討」,中國土木水利工程學會七十三年年會論文集,第1卷,第51- 69頁(1984)。
4.宋佳霖,「台北捷運新店線CH221標潛盾隧道施工引致之地盤變位」,碩士論文,國立交通大學土木工程研究所,新竹 (1995)。
5.林俊雄,「離心模型黏土試體之準備與強度標定」,碩士論文,國立中央大學土木工程學系,中壢(1995)。
6.吳秉儒,「黏性土層中隧道開挖引致之地盤沉陷與破壞機制」,博士論文,國立中央大學土木工程學系,中壢(2002)。
7.邱顯堯,「並行雙隧道變形之互制行為」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
8.周小文, 「盾构隧道土压力离心模型试验及理论研究」,博士论文,清华大学水利水电工程系,北京 (1999)。
9.莊孟翰,「未襯砌隧道壁變形引致地盤下陷分布形態分析」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
10.陳泓文,「砂土坡地井樁受側向力之離心機模型試驗」,博士論文,國立中央大學土木工程學系,中壢(1999)。
11.陳秉嵩,「砂土層隧道之穩定性與土壓力分布」,碩士論文,國立中央大學土木工程學系,中壢 (2005)。
12.郭家銘,「砂土層中通隧引致之地盤變位及其對既存基樁的影響」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
13.黃信富,「通隧引致隧道上方短樁之反應」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
14.歐晉德,「基樁受填土影響之側向力問題」,地工技術雜誌,第十八期,第8-13頁(1987)。
15.張吉佐、王建智、陳秋宗、吳東錦,「潛盾隧道施工之地盤變形資料蒐集分析」,中興工程顧問社 (1997)。
16.Acutronic, Civil Engineering Centrifuge Model 665-1 Installation Manual 5941E, France (1992).
17.Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France (1993).
18.Atkinson, J.H., and Potts, D.M., “Subsidence above shallow tunnels in soft ground,”Journal of Geotechnical Engineerimg, ASCE, Vol. 103, No.GT4, pp.307-325 (1977).
19.Abdoun, T., Dobry, R., O′Rourke, T. D., and Goh, S. H., “Pile response to lateral spreads: Centrifuge Modeling,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 10, pp. 869-878 (2003).
20.Bezuijen, A., Schrier, J.V.D., “The influence of a bored tunnel on pile foundations,” Centrifuge 94 edited by Lee and Tan, Balkema, Rotterdam, pp.681-686 (1994).
21.Broms, B.B., “Lateral resistance of piles in cohesive soil,” Journal of the Soil Mechanics and Foundations Division SM2, ASCE, Vol.90, pp.27-63 (1964).
22.Chambon, P., and Corté, J.F., “Shallow tunnels in cohesionless soil: stability of tunnel face,” Journal of Geotechnical Engineering, ASCE, Vol.120, No.7, pp.1148-1165 (1994).
23.Chambon, P., Corté, J.F., and Garnier, J., “Face stability of shallow tunnels in granular soils,” Proceedings of International Conference Centrifuge 91, Boulder, Colorado, pp.99-105 (1991).
24.Chen, L.T., Poulos, H.G., and Loganathan, N., “Pile responses caused by tunneling,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, No.3, pp.207-215 (1999).
25.Clough, G.W., and Schmidt, B., “Design and performance of excavations and tunnels in soft clay,” In Soft Clay Engineering, pp.600-634 (1981).
26.Cording, E.J., and Hansmire, W.H., “Displacement around soft ground tunnels,” Proc. 6th Panamerican Conf. on Soil Mechanics and Foundation Engineering, Buenon Aires, pp.571-633 (1975).
27.Dobry, R., Abdoun, T., O′Rourke, T. D., and Goh, S. H., “Single piles in lateral spreads: Field bending moment evaluation,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, pp. 879–889 (2003).
28.Ellis, A., and Springman S.M., “Centrifuge and numerical modelling of pile bridge on soft clay,” Centrifuge 98, edited by Kimura Kusakaba and Takamura, Vol.1, pp.557-562 (1998).
29.Fujita, K., “Prediction of surface settlements caused by shield tunnelling,” Proceedings of International Conference on Soil Mechanics, Mexico, Vol.1, pp.239-246 (1982).
30.Hoyaux, B., and Ladanyi, B.,“Gravitational stress field around a tunnel in soft ground,”Canadian Geotechnical Journal, Vol. 7, pp. 54-61(1969)
31.Ito, T., Matsui, T., and Hong, W.P., “Design method of stabilizing piles against landslide one row of piles,” Soils and Foundations, Vol.21, No.1, pp.21-38 (1981).
32.Jacobsz, S.W., Standing, J.R., Mair, R.J., Hagieara, T., and Sugiyama, T., “Centrifuge modeling of tunneling near driven piles,” Soils and Foundations, Vol.44, No.1, pp.49-56 (2004).
33.Kaalberg, F.J., Teunissen, E.A., Tol, A.F., Bosch, J.W., “Dutch research on the impact of shield tunneling on pile foundations,” Proc. 16th Int. Conf. Soil Mech. Found. Engrg., Osaka, pp.1615-1620 (2005).
34.Lee, R.G., Turner, A.J., and Whitworth, L.J., “Deformation caused by tunneling beneath a piled structure,” Proc. XIII Int. Conf. Soil Mech. Found. Engrg., New Delhi, pp.873-877(1994).
35.Lee, C.J., Chiang, K.H., Kou, C.M., “Ground movement and tunnel stability when tunneling in sandy ground,” Journal of the Chinese Institute of Engineers, Vol.27, No.7, pp.1021-1032 (2004).
36.Lee, C.J., Wu, B.R., and Chiou, S.Y., “Soil movements around a tunnel in soft soils,” Proc. Natl. Sci. Counc. ROC, series A, Vol.25, No.2, pp235-247 (1999).
37.Lee, Gordon T.K., and Ng, Charles W.W. “Effects of advancing open Face tunneling on an existing loaded Pile,” Journal of Geotechnical and Geoenvironmental Engineering , ASCE, Vol.131, No.3, pp.193-201 (2005).
38.Longanathan, N., Poulos H.G., and Xu, K. J., “Ground pile-group responses due to tunnelling,” Soils and Foundations, Vol.41, No.1, pp.57-67 (2001).
39.Longanathan, N., Poulos H.G., and Stewart, D.P., “Centrifuge model testing of tunnelling-induced ground and pile deformations,” Geotechnique, Vol.50, No.3, pp.283-294 (2000).
40.Meyerhof, G.G., “Bearing capacity and settlement of pile foundation,” Journal of the Geotechnical Eng. Div., ASCE, Vol.102, No.GT3, pp.195-227 (1976).
41.Mair, R.J., Taylor, R.N., and Bracegirdie, A.,“Subsurface settlement profiles above tunnels in clays,” Geotechnique, Vol.43, No.2, pp. 315-320 (1993).
42.Matsui,T., Hong, W.P., and Ito, T., “Earth pressures on piles in a row due to lateral soil movements,” Soils and Foundations, Vol.22, No.1, pp.71-81 (1982) .
43.Mroueh, H., and Shahrour, I., “Three-dimensional finite element analysis of the interaction between tunneling and pile founding,” Interational Journal for Numerical and Analytical Method in Geomechanics, Vol.26, No.3, pp.217-230 (2002).
44.Nakai, T., Xu, L., and Yamazaki, H.,“3D and 2D model tests and numerical analyses of settlements and earth pressures due to tunnel excavation,”Soils and Foundations, Vol. 37, No. 3, pp. 31-42(1997)
45.Nomoto, T., Imamura, S., Hagiwara, T., Kusakabe, O., and Fujii, N., “Shield Tunnel Construction in Centrifuge,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 4, pp. 289-299 (1998).
46.Ou, C.Y., Hwang, R.N., and Lai, W.J., “Surface Settlement during Shield Tunneling at CH218 in Taipei,” Candian Geotechnical Journal, Vol. 35, No.1, pp. 159-168 (1998).
47.Park, S.H., and Adachi, T.,“Laboratory model tests and analyses on tunneling in the unconsolidated ground with inclined layers,”Tunnelling and Underground Space Technology, Vol. 17, pp. 181-193(2002).
48.Peck, R.B., “Deep Excavations and Tunneling in Soft Ground,” Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State-of-the-Art Volume, pp. 225-290 (1969).
49.Poulos, H.G. “Analysis of piles in soils undergoing lateral movements,” Journal of the Soil Mechanics and Foundations Division SM5, ASCE, Vol.99, pp.391-406 (1973).
50.Poulos, H. G., and Chen, L.T., “Pile response due to excavation-induced lateral soil movement,” Journal of Geotechnical and Geoenvironmental Engineering ,ASCE, Vol.123, No.2, pp.94-99 (1997).
51.Poulos, H. G., Chen, L.T., and Hull, T.S., “Model tests on single pile subjected to lateral soil movement,” Soils and Foundations, Vol.35, No.4, pp.85-92 (1995).
52.Poulos, H.G., Chen, L.T., and Hull, T.S., “Model tests on pile group subjected to lateral soil movement,” Soils and Foundations, Vol.37, No.1, pp.1-12 (1997).
53.Poulos, H.G., and Davis, E.H., Pile foundation analysis and design, Wiley, New York, pp.311-322(1980).
54.Sugiyama, H., and Goto, S., “Evaluation of the earth pressure redistributeion around ECL tunnels,” Physical Modelling in Geotechnics:ICPMG ’02, Canada, pp.785-790 (2002).
55.Stewart D.P., Jewell R.J., and Randolph M.F., “Numerical modelling of piled bridge abutments on soft ground,” Computers and Geotechnics, Vol.15, No.1, pp.21-46 (1993).
56.Springman, S.M., and Bolton, M.D., “Modeling the behavior of piles subjected to surcharge loading,” Centrifuge 91, pp.253-260 (1991).
57.Terzaghi, K, “Discussion of the Progress Report of the Committee on the Bearing Value of. Pile Foundations,” Proc. ASEC, Vol.68, pp. 311-323 (1942).
58.Terzaghi, K., Theoretical soil mechanics, John-Wiley and Sons, New York, pp.66-76 (1943).
59.Vesic, A.S., “Design of pile foundation,” Transportation Research Board, National Cooperative Highway Research Program, Washington D.C., Synthesis of Highway Practice No.42 (1977).
60.Wu, B.R., and Lee, C.J., “Ground movements and collapse mechanisms induced by tunneling in clayey soil,” International Journal of Physical Modelling in Geotechnics, Vol. 3, No.4, pp.13-27 (2003).
61.Yang, J.S., and Wang, M.C., “Evaluation of Tunneling-Induced Downdrag on End-Bearing Piles,” The Electronic Journal of Geotechnical Engineering, Vol.7, (2002).
62.Zhou, X., Pu, J., and Yin, K., “A Study of Stability and Failure Mechanism of Sand around a Tunnel,” Proceedings of the International Conference Centrifuge 98, Kimura, Kusakabe and Takemura (eds.), Balkema, Tokyo, pp. 727-731 (1998).
指導教授 李崇正(Chung-jung Lee) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明