博碩士論文 942204021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.145.176.131
姓名 鍾依靜(Yi-Ching Chung)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Pseudomonas putida TX2中催化辛基苯酚聚氧乙基醇之醇類脫氫酶的初步定性
(Preliminary characterization of alcohol dehydrogenase interacting with octylphenol polyethoxylates in Pseudomonas putida TX2)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 烷基苯酚聚氧乙基醇(Alkylphenol polyethoxylates, APEOn)為一常被用於工業、農業及ㄧ般家庭使用之非離子界面活性劑;它包含辛基苯酚聚氧乙基醇(Octylphenol polyethoxylates, OPEOn)及壬基苯酚聚氧乙基醇(Nonylphenol polyethoxylates, NPEOn),其中以NPEOn的使用量佔全世界的80%。大量的界面活性劑被釋放到環境當中已知會在環境中生成短鏈(n≦3)之APEOn及alkylphenol (AP)對於水中之生物以及人類皆具類似雌激素之環境荷爾蒙效應。目前對於環境中微生物體中烷基苯酚聚氧乙基醇的降解途徑並非十分清楚。先前本實驗室篩選出一株可利用0.05~20%辛基苯酚聚氧乙基醇或0.02% octylphenol (OP)為唯一碳源生長之菌株,將之命名為Pseudomonas putida TX2。根據液相層析串聯式質譜儀的分析,P. putida TX2可逐步的切斷OPEOn的氧乙基鏈,生成octyl phenol (OP),再生成octyl catechol (OC),顯示此菌可對具雌激素活性OP進行轉化,特別的是,此菌亦可直接以OP為唯一碳源生長(同時會偵測到OC生成,但下游產物不明),顯示P. putida TX2可成為一個研究AP分解機制之模式生物。本研究主要目的即在由P. putida TX2中純化在此代謝途徑中第一個利用OPEOn的酵素。在P. putida TX2中發現有一醇類脫氫酶 (alcohol dehydrogenase, ADH),其在細胞粗萃取液中占總活性的48%,3%在周質間,16%的活性在高速離心分離後的細胞質及細胞膜中間的沉澱物中。發現此ADH在100 mM citric acid phosphate緩衝液, pH 7, 40 oC時活性最高,在pH 6及pH 8的100 mM citric acid phosphate緩衝液下酵素活性可穩定42小時。利用偵測不同輔因子的醇類脫氫酵素活性法,推估對OPEOn具活性之醇類脫氫酶應含有pyrroloquinoline quinine (PQQ)與heme c;在595 μg細胞粗萃取液中之ADH對於OPEOn、NPEOn及AEO8分別有6.5, 5.2及5.6 mU/mg的活性,並且也對於nonyl aldehyde具有19.8 mU/mg活性,而對polyethylene glycol (PEG)、methanol、butanol、benzyl alcohol、formaldehyde和benzaldehyde無活性。利用離子交換管柱層析及疏水性管柱層析得知P. putida TX2中至少有兩個PQQ-linked ADH,ㄧ個為pI<6.5而另ㄧ為pI>8;在酵素純化方面,第ㄧ步採用疏水性管柱層析,才可得到較高之回收率 (20%)以及純度 (1.1~2.5倍)。由P. putida TX2經離子交換管柱層析後之部分純化的ADH (1048 μg的蛋白質)對於OPEOn、NPEOn及AEO8分別有5.53 mU/mg, 5.22 mU/mg和5.07 mU/mg的活性,其中,此部份純化之ADH對於nonyl aldehyde也具7.63 mU/mg活性,而對PEG、methanol、butanol、benzyl alcohol、formaldehyde和benzaldehyde無活性,因此推測P. putida TX2 之ADH可先將OPEOn末端氫氧基氧化成醛基再將其氧化成羧基。未來將選殖此ADH,以進一步確認ADH在P. putida TX2中所扮演之角色。
摘要(英) Alkylphenol polyethoxylates (APEOn) are non-ionic surfactants and extensively used in industrial, agricultural, and household activities. APEOn includes octylphenol polyethoxylates (OPEOn) and nonylphenol polyethoxylates (NPEOn). Large quantities of surfactants are released into environment and formed short chain APEOn (n≦3)and alkylphenol (AP). These metabolites mimic estrogenic activity, as environmental hormones, which are harmful to aquatic organisms and human. The biodegradation pathway and fate of these compounds in the environment and in organisms still remains unclear. Pseudomonas putida TX2 was isolated in Taiwan and was able to grow on 0.05~0.5% octylphenol polyethoxylates (OPEOn) or 0.02% octylphenol (OP) as sole carbon source. According to the Liquid Chromatograph-Mass Spectrometry analysis, P. putida TX2 was capable of degrading OPEOn to form OPEOn (n≦3). It also transformed OP to form octylcatechol (OC) through a sequential cleavage of ethoxylate chain. Since P. putida TX2 can grow on OP as sole carbon source, it can be a model organism to study the degradation mechanism of estrogenic-like AP. The purpose of this research is to characterize the first enzyme react on OPEOn in P. putida TX2. Using crude extract as our sample, an alcohol dehydrogenase (ADH) was found to be 48% of activity in the crude extract, 3% in periplasm and 16% of activity in the fraction between crude extract and membrane after an ultra-speed centrifugation. ADH from P. putida TX2 showed highest activity in 100 mM citric acid phosphate buffer, pH 7 at 40oC and is stable in pH 6 and 8 100 mM citric acid phosphate buffers for 42 hours. Using different enzyme assays to detect different cofactors involved in ADH, the ADH has activity toward OPEOn is a PQQ-linked and heme c containing ADH. 595 μg of protein in crude extract, ADH has 6.5, 5.2 and 5.6 mU/mg activity toward OPEOn, NPEOn, AEO8 and nonyl aldehyde, respectively and no activity to polyethylene glycol (PEG), methanol, butanol, benzyl alcohol, formaldehyde and benzaldehyde. By ionic exchange chromatography and hydrophobic interaction chromatography, there are at least two different PQQ-linked ADHs, pI<6.5 and pI>8. The first purification is a hydrophobic interaction chromatography because of the higher recovery and purification fold compared to anionic and cationic exchange chromatographies. The partially purified ADH (pI>6.5) by ionic exchange chromatographies has 5.53 mU/mg, 5.22 mU/mg and 5.07 mU/mg activity toward OPEOn, NPEOn and AEO8, respectively. It also has 7.63 mU/mg of activity toward nonyl aldehyde. No activity on PEG, methanol, butanol, benzyl alcohol, formaldehyde and benzaldehyde were detected .Therefore, we proposed that ADH (pI>6.5) in P. putida TX2 is the first to oxidize the terminal OH group of OPEOn to aldehyde then to carboxylic acid to form octylphenol polyethoxycarboxylate (OPECn). For the future work, we will clone this ADH to confirm the role in the OPEOn degradation pathway by P. putida TX2.
關鍵字(中) ★ 醇類脫氫酶
★ 辛基苯酚聚氧乙基醇
關鍵字(英) ★ alcohol dehydrogenase
★ octylpheonol polyethoxylates
論文目次 目錄I
表目錄II
圖目錄III
縮寫與全名對照表IV
壹、緒論1
 ㄧ、界面活性劑之性質與使用及其代謝物的影響1
二、烷基苯酚聚氧乙基醇之分解4
三、研究動機9
貳、材料與方法11
一、菌株與培養11
二、蛋白質大量表現14
三、酵素活性測試20
四、酵素純化23
五、蛋白質偵測方式27
六、酵素定性28
七、化學藥品與儀器設備29
參、結果31
一、微生物培養31
二、蛋白質大量表現31
三、酵素活性測試32
四、酵素純化37
五、酵素定性39
肆、討論41
伍、結論與建議50
陸、參考文獻52
表58
圖72
附錄96
參考文獻 邱凡峰。2005。以功能性蛋白質體學研究Pseudomonas nitroreducensTX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應。國立中央大學生命科學研究所碩士論文。
謝孝正。2004。Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究。國立中央大學生命科學研究所碩士論文。
洪國展。2004。分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺
脫氫酶)的純化與定性。國立中央大學生命科學研究所碩士論文。
黃雪莉。2002。界面活性劑之微生物分解。微生物資源與應用研討會論文集。p.159-175。   
李美慧。2000。常見環境荷爾蒙物質及其影響。第一屆環境荷爾蒙研討會論文集。p.4-14。
廖明隆 譯。1994。界面化學與界面活性劑。文原書局。p.13-35。
Cook, A.M., H. Laue, and F. Junker. 1998. Microbial desulfonation.FEME Microbiology Review. 22: 399-419.
Diehl, A., F. Wintzingerode and H. Gorisch. 1998. Quinoprotein ethanol dehydrogenase of Pseudomonas aeruginosa is a homodimer: sequence of the gene and deduced structural properties of the enzyme. Eur. J. Biochem. 257: 409-419.
Ding, W. H., S. H. Tzing and J. H. Lo. 1999. Occurrence andconcentrations of aromatic surfactants and their degradation products in river waters of Taiwan. Chemosphere. 38: 2597-606.
Giger, W. P. H. Brunnen and C. Schaffner. 1984. 4-nonylphenol in sewage sludge accumulation of toxic metabolites from nonionic surfactants. Science. 225: 623-625.
Green, D. W., H. W. Sun and B. V. Plapp. 1993. Inversion of the substrate specificity of yeast alcohol dehydrogenase. J. Biolo. Chem. 268: 7792-7798.
Groen, B.W, M.A.G. Kleef and J.A. Duine. 1986. Quinohemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Biochem J. 234: 611-625.
Hauthal, H. G. 1992. Trends in surfactants. Chim Oggi. 10: 9-13.
Herold, D. A., K. Keil and D. E. Bruns. 1989. Oxidation of
polyethylene glycols by alcohol dehydrogenase. Biochem. Pharmacology. 38: 73-76.
Hideaki M., N. Masuda, Y. Fujiwara, M. Ike and M. Fujika. 1994.
Degradation of alkylphenol ethoxylates by Pseudomonas sp. Strain TR01. Appl. Environ. Microbiol. 60: 2265-71.
Hoffmeister, M., M. Piotrowski, U. Nowitzki, and W. Martin. 2005.
Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J. Biol. Chem. 280(6): 4329-4338.
John, D.M., and G.F. White. 1998. Mechanism for biotransformation of nonylphenol polyethoxylates to xenoestrogens in Pseudomonas putida. J. Bacteriol. 180: 4332-4338.
Jon, G.A de, H. A. Geerlof, J. Stoorvogel, J. A. Jongejan, A.D. Vries and J. A. Duine. 1995. Quinohaemoprotein ethanol dehydrogenase from Comamonas testosterone: purification, characterization, and reconstitution of the apoenzyme. Eur. J. Biochem. 230: 899-905.
Kawai, F. 2002. Microbial degradation of polyethers (mini-review). Appl. Microbiol. Biotechnol. 58: 30-38.
Kawai, F., T. Kimura, Y. Tani, H. Yamada and M. Kurach. 1980. Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol. Appl. Enviro. Microbio. 40: 701-705.
Liu, X., A. Tani, K. Kimbara and F. Kawai. 2007. Xenoestrogenic short ethoxy chain nonylphenol is oxidized by a flavoprotein alcohol dehydrogenase from Ensifer sp. strain AS08. Appl. Microbiol. Biotechnol. 73:1414–1422.
Maki, H., N. Masuda, Y. Fujiwara, M. Ike and M. Fujita. 1994.
Degradation of alkylphenol ethoxylates by Pseudomonas sp. Strain TR01. Appl. Environ. Microbiol. 60: 2265-71.
Matsushita, K., E. Shinagawa, O. Adachi and M. Ameyama. 1982.o-Type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa. FEBS Lett. 139: 255-258.
Montgomery-Brown, J., and M. Reinhard. 2003. Occurrence and behavior of alkylphenol polyethoxylates in the environment. Enviro. Eng. Sci. 20: 471-86.
Reddy, S. Y., and T. C. Bruice. 2004. Mechanisms of ammonia activation and ammonium ion inhibition of quinoprotein methanol dehydrogenase : A computational approach. PNAS. 101: 15887-15892.
Reichmann, P., and H. Gorisch. 1993. Cytochrome c550 from
Pseudomonas aeruginosa. Biochem J. 289: 173-178.
Rupp, M., and H. Gorisch. 1988. Purification, crystallisation and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeroginosa. Bioi. chem. Hoppe-Seyler. 369: 4310-4319.
Sato, H., A. Shibata, Y. Wang, H. Yoshikawa and H. Tamura. 2001. Characterization of biodegradation intermediates of non-ionic surfactants by matrix-assisted laser desorption/ionization-mass spectrometry. 1. Bacterial biodegradation of octylphenol polyethoxylates under aerobic conditions. Polymer Degradation and Stability. 74: 69-75.
Staples, C. A., J. Weeks, J. F. Hall, C. G. Naylor. 1998. Evaluation of aquatic toxicity and bioaccumulation of C8- and C9-alkylphenol ethoxylates. Environ. Toxicol. Chem. 17(12): 2470-2480.
Sugimoto, M., M. Tanabe, M. Hataya, S. Enokibara, J. A. Duine and F. Kawai. 2001. The first step in polyethylene glycol degradation by Sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J. Bact. 6694-6698.
Tabira, Y., M. Nakai, D. Asai, Y. Yakabe, Y. Tahara, T. Shinmyozu,M. Noguchi, M. Takatsuki and Y. Shimohigashi. 1999. Structural requirements of para-alkylphenols to bind to the estrogen receptor.Eur. J. Biochem. 262: 240-5.
Tachibana, S., F. Kawai and M. Yasuda. 2002. Heterogeneity of dehydrogenases of Stenotrophomonas maltophilia showing dye-linked activity with polypropylene glycols. Bosci. Biotechnol. Biochem. 66: 737-42.
Tanenbaum, D. M., Y. Wang, S. Williams and P. Sigler. 1998.
Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc. Natl. Acad. Sci. 95: 5998-6003.
Tasaki, Y., H. Yoshikawa and H. Tamura. 2006. Isolation and characterization of an alcohol dehydrogenase gene from the octylphenol polyethoxylates degrader Pseudomonas putida S-5. Biosci. Biotecnol. Biochem. 70(8): 1855-1863.
Tigerstrom, R. G., and W. E. Razzell. 1968. Aldehyde dehydrogenase. I.Purificationand properties of the enzyme from Pseudomonas aeruginosa. J. Biol. Chem. 243(10): 2691-2702.
Toyama, H., F. S. Mathews, O. Adachi and K. Matsushita. 2004. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Archives of Biochem. Biophy. 428: 10-21.
Toyama, H., A. Fujii, K. Matsushita, E. Shinagawa, M. Ameyama and O. Adachi. 1995. Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J. Bacteriology. 2442-2450.
Vazquez-Laslop, N., H. Lee, R. Hu, and A. A. Neyfakh. 2001. Molecular sieve mechanism of selective release of cytoplasmic proteins by osmotically shocked Escherichia coli. J. Bact. 2399-2404.
van Ginkel, C. G. 1996. Complete degradation of xenobiotic surfactants b consortia of aerobic microorganisms. Biodegradation. 7:151-164.
Wu, S. L., H. Amato, R. Biringer, G. Choudhary, P. Shieh, and W. S. Hancock. 2002. Targeted proteomics of low-level proteins in human plasma by LC/MS: using human growth hormone as a model system. J. Proteome. Res. 1:459-465.
Yamashita, M., A. Tani and F. Kawai. 2004. A new ether bond-splitting enzyme found in Gram-positive polyethylene glycol 6000-utilizing bacterium, Pseudonocardia sp. strain K1. Appl. Microbiol. Biotechnol. 66: 174-179.
Yasuda, M., A. Cherepanov and J. A. Duine. 1996. Polyethylene glycol dehydrogenase activity of Rhodopseudomonas acidophila derives from a type I quinohaemoprotein alcohol dehydrogenase. FEMS Microbiol. Letters. 138: 23-28.
Ying, G. G., B. Williams and R. Kookana. 2002. Environmental fate of alkylphenols and alkylphenol ethoxylates- a review. Environ. Internat. 28: 215-226.
Zarnt, G.., T. Schraeder and J. R. Andreesen. 1997. Degradation of tetrahydrofurfuryl alcohol by Ralstonia eutropha is initiated by an inducible pyrroloquinoline quinone-dependent alcohol dehdrogenase. Appl. Environ. Microbiol. 63: 4891-4898.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2008-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明