博碩士論文 101322048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.138.204.226
姓名 吳俊澔(Chun-hao Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 抑制副產石灰掺合水淬爐石粉的膨脹及緩凝行為之探討
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以CFB副產石灰20%、30%和40%掺合水淬爐石粉進行激發作用,並添加4%和8%含鹼量與0.6、0.9和1.2模數比之鹼激發劑,量測不同齡期抗壓強度、膨脹、乾縮、流度與凝結時間等特性,配合XRD射線繞射分析和熱重分析(TGA)進行微觀觀測。研究結果顯示,當CFB副產石灰摻配比例為30%時,添加適量之鹼激發劑可以有效改善其強度發展並抑制膨脹反應。微觀分析亦發現:CFB副產石灰摻用比例達30%及40%時有大量鈣礬石產出和氫氧化鈣轉移,會造成膨脹量增加和抗壓強度降低,而添加適當含鹼量和模數比則能夠抑制膨脹量、減少鈣礬石和提升抗壓強度。
摘要(英) This study focused on the production of activated reaction using 20%, 30%, 40% CFB ash and ground granulated blast furnace slag (GGBFS) with 4%, 8% Na2O content and 0.6, 0.9, 1.2 M.S.(modulus of water-glass). The research observed it is mechanical strength, expansion, shrinkage and workability. And use precision Instruments analysis such as XRD and TGA to verify the conclusion. The results indicate for 70% GGBFS-30% CFB ash, the addition of proper alkali activators improve the strength development and expansion behavior. Microscopic detection shows that added 30 % and 40 % CFB producing large amount of ettringite and Ca(OH)2, which will cause high expansion and low mechanical strength. And add an appropriate amount of alkali activate slag with suitable Ms that could control expansion.
關鍵字(中) ★ CFB 副產石灰
★ 鹼激發
★ 水淬爐石粉
關鍵字(英) ★ CFB ash
★ Alkali-activated
★ GGBFS
論文目次 摘要
目錄…………………………………………………...………………………………..I
圖目錄………………………………………………………………………………..III
表目錄………………………………………………………………………………..VI
第一章 緒論………………………………………………………………………… 1
  1.1研究動機…………………………………………………………………… 1
  1.2研究目的…………………………………………………………………… 2
  1.3研究內容…………………………………………………………………… 2
第二章 文獻回顧…………………………………………………………………… 4
  2.1水淬爐石粉漿體之抗壓強度……………………………………………… 4
    2.1.1 CaO和Ca(OH)2激發劑.…………………………………………… 5
    2.1.2無水石膏(CaSO4)和半水石膏(CaSO4.1/2H2O)激發劑…………...6
    2.1.3 添加水玻璃之激發………………………………………………… 8
  2.2水淬爐石粉水化物之X-ray 繞射分析(XRD)結構分析…………………. 9
  2.2.1. 比較CaO和Ca(OH)2激發水淬爐石粉X-ray 繞射分析……….10
2.2.2無水石膏(CaSO4)和半水石膏(CaSO4.1/2H2O)激發劑之XRD…13
2.2.3添加水玻璃之激發.…………………………………………………15
2.3熱重分析和水化……………………………………………………………16
2.3.1添加CaO和Ca(OH)2 激發劑之TGA……………………………..16
2.3.2無水石膏(CaSO4)和半水石膏(CaSO4.1/2H2O)激發劑之比較…..18
2.3.3 Ca(OH)2和CaSO4 2H2O混合激發………………………………...21
2.4水淬爐石粉水化機制………………………………………………………24
2.4.1水淬爐石粉水化機理……………………………………………… 24
2.4.2 CFB副產石灰中石膏之水化機理…………………………………25
2.4.3水淬爐石粉之激發劑……………………………………………….26
2.4.4 水淬爐石粉水化物性質……………………………………………31
第三章 實驗材料及方法……………………………………………………………33
3.1試驗流程……………………………………………………………………33
3.2試驗材料……………………………………………………………………37
3.3試驗設備……………………………………………………………………39
3.4試驗方法……………………………………………………………………44
3.5 SO3檢測方法……………………………………………………………….46
3.6鹼激發劑用量計算…………………………………………………………48
3.7 CFB 副產石灰提高硫含量之計算………………………………………..49
第四章 結果與討論…………………………………………………………………51
4.1 CFB副產石灰硫含量檢測………………………………………………..51
4.2膨脹量………………………………………………………………………53
4.2.1水淬爐石粉摻配CFB副產石灰之膨脹量……………………….. 53
4.2.2添加鹼激發劑對膨脹量之影響…………………………………… 55
4.2.3 提高CFB副產石灰石膏含量對膨脹量之影響…………………. 58
4.3抗壓強度…………………………………………………………………...61
4.3.1水淬爐石粉摻合CFB副產石灰之抗壓強度……………………...61
4.3.2添加鹼激發劑對抗壓強度之影響………………………………….61
4.3.3提高CFB副產石灰石膏含量對抗壓強度影響…………………...67
4.4乾縮行為…………………………………………………………………....71
4.5工作行為……………………………………………………………………75
4.5.1初終凝時間………………………………………………………….75
4.5.2砂漿流度…………………………………………………………….78
4.6 XRD射線繞射分析……………………………………………………….81
4.7熱重分析……………………………………………………………………90
4.7.1水淬爐石粉摻合水泥或CFB副產石灰之熱重分析……………...90
4.7.2添加鹼激發劑之熱重分析………………………………………….95
4.7.2.1 7-3系列添加鹼激發劑之熱重分析…………………………95
4.7.2.2 8-2系列添加鹼激發劑之熱重分析………………………100
4.7.2.3 6-4系列添加鹼激發劑之熱重分析………………………102
4.7.3提高CFB副產石灰石膏含量之熱重分析……………………….104
第五章 結論與建議………………………………………………………………..106
5.1結論………………………………………………………………………..106
5.2建議………………………………………………………………………..108
參考文獻…………………………………………………………………..109
參考文獻 Bakharev, T., Sanjayan, J. G., Cheng, Y. B. (1999). Effect of elevated temperature curing on properties of alkali-activated slag concrete, Cement and Concrete Research 29(10) 1619-1625

Bakolas, A., Aggelakopoulou, E., Moropoulou, A., & Anagnostopoulou, S. (2006). Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes. Journal of thermal analysis and calorimetry, 84(1), 157-163.

Bilim, C., Atiş, C. D., Tanyildizi, H., & Karahan, O. (2009). Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Advances in Engineering Software, 40(5), 334-340.

Bilim, C., Atiş, C. D. (2012). Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag. Construction and Building Materials, 28(1), 708-712.

Duran Atiş, C., Bilim, C., Çelik, Ö., & Karahan, O. (2009). Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construction and building materials, 23(1), 548-555.

Garg, M., & Pundir, A. (2014). Investigation of properties of fluorogypsum-slag composite binders–Hydration, strength and microstructure. Cement and Concrete Composites, 45, 227-233.

Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Figi, R., Ko, S. C., Adler, M., & Mäder, U. (2008). Hydration mechanisms of super sulphated slag cement. Cement and Concrete Research, 38(7), 983-992.

Haha, M. B., Le Saout, G., Winnefeld, F., Lothenbach, B. (2011). Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cem. Concr. Res. 41. 301–310.

Haha, M. B., Lothenbach, B., Le Saout, G., & Winnefeld, F. (2012). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3. Cement and Concrete Research, 42(1), 74-83.

Hannesson, G., Kuder, K., Shogren, R., & Lehman, D. (2012). The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete. Construction and Building Materials, 30, 161-168.

Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research, 54, 208-214.

Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R. (2006). (Micro)-structural comparison between geopolymers alkali-slag cement and Portland cement, Journal of the European Ceramic Society, 26. 3789-3997.

Li, Y., & Sun, Y. (2000). Preliminary study on combined-alkali–slag paste materials. Cement and concrete research, 30(6), 963-966.

Midgley, H. G., Petifer, K. (1971). The misostructure of hydrated supersulphated cement, Cement and Concrete Research, 1. 101-104.

Moseson, A. J., Moseson, D. E., & Barsoum, M. W. (2012). High volume limestone alkali-activated cement developed by design of experiment. Cement and Concrete Composites, 34(3), 328-336.

Neto, A. A. M., Cincotto, M. A., & Repette, W. (2010). Mechanical properties, drying and autogenous shrinkage of blast furnace slag activated with hydrated lime and gypsum. Cement and Concrete Composites, 32(4), 312-318.

Orsini, P.G., Buri , A., Marotta, A. (1975). Devitrification of glasses in the akermanite-gehlenite system, J. Am. Ceram. Soc. 58. 306–311.

Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: a cement for the future. Cement and concrete research, 29(8), 1323-1329.

Sajedi, F., Razak, H. A., Mahmud, H. B., & Shafigh, P. (2012). Relationships between compressive strength of cement–slag mortars under air and water curing regimes. Construction and Building Materials, 31, 188-196.

Sawyer, C.N., Mccarty, P.L., Parkin, G.F. (2003). Chemistry for environmental energineering and science, McGraw-Hill Companies, Inc. 5th. 674-675.
Sha, W., & Pereira, G. B. (2001). Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag. Cement and concrete research, 31(2), 327-329.

Sha, W. (2002). Differential scanning calorimetry study of the hydration products in Portland cement pastes with metakaolin replacement, Proceedings of the International Conference on Advances in Building Technology, vols I, II. 881–888.

Shi, C., & Day, R. L. (1995). A calorimetric study of early hydration of alkali-slag cements. Cement and Concrete Research, 25(6), 1333-1346.

Shi, C., & Day, R. L. (1996). Some factors affecting early hydration of alkali-slag cements. Cement and Concrete Research, 26(3), 439-447.

Shi, C. (1996). Strength, pore structure and permeability of alkali-activated slag mortars. Cement and Concrete Research, 26(12), 1789-1799.

Singh, M., & Garg, M. (2002). Calcium sulfate hemihydrate activated low heat sulfate resistant cement. Construction and Building Materials, 16(3), 181-186.

Song, S., & Jennings, H. M. (1999). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research, 29(2), 159-170.

Taylor, H. F. (1997). Cement chemistry. Thomas Telford.

Wang, S. D., Scrivener, K. L., & Pratt, P. L. (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24(6), 1033-1043.

Wang, S. D., & Scrivener, K. L. (1995). Hydration products of alkali activated slag cement. Cement and Concrete Research, 25(3), 561-571.

Wei, Y., Yao, W., Xing, X., & Wu, M. (2012). Quantitative evaluation of hydrated cement modified by silica fume using QXRD, 27 Al MAS NMR, TG–DSC and selective dissolution techniques. Construction and Building Materials, 36, 925-932.

Yang, K. H., Cho, A. R., Song, J. K., & Nam, S. H. (2012). Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Construction and Building Materials, 29, 410-419.

台塑石化(股)公司, 副產品「混合石膏及副產石灰」再利用技術及應用推廣規範評估報告, 2006年8月

王昱智. CFB 副產石灰為混凝土膠結材料之配比與特性研究. 中央大學土木工程學系碩士學位論文, 2008, 1-139.

汪翊鐙. CFB副產石灰掺配爐石粉製作混凝土成效研究. 中央大學土木工程學系碩士學位論文, 2009.

林瑋倫.鹼激發爐石基膠體工程性質之研究. 國立台灣科技大學營建工程系碩士學位論文,2009.

李東旭、吳學權,「石膏種類對礦渣水泥性能的影響」,水泥工程學刊,第一期,1999, 16-18.

黃暉淇. 循環式流化床燃燒飛灰應用於水泥質複合材料之機理與特性研究. 國立台灣海洋大學材料工程研究所碩士學位論文, 2008.
指導教授 李釗(Chau Lee) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明