博碩士論文 101223058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:52.15.245.1
姓名 戴順育(Shawn-Yu Dai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 氣相層析技術應用於揮發性有機化合物分析方法中熱脫附行為之診斷
(Diagnosis of Thermal Desorption in the Analysis of Volatile Organic Compounds (VOCs) by Gas Chromatography)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 揮發性有機化合物(volitile organic compound, VOCs)的周界濃度通常很低,為了使低濃度VOCs能夠被分析,一般須透過預濃縮技術以提高氣相層析法之偵測下限。然而分析過程中常受到(進樣管路中)系統內部無益體積(dead volume)的影響,造成譜峰拖尾(peak tailing)的現象,影響VOC層析圖譜的解析度與精準確度。此外,吸附劑的種類亦決定熱脫附儀對VOC分析效果,而一個良好的吸附材料具有廣泛的捕捉範圍與吸脫附佳的特性,亦能夠簡化和降低吸附管的製備難度。本研究主要透過氣相層析法,使用火焰離子偵測器(flame ionization detection, FID),搭配VOC熱脫附技術(thermal desorption, TD),以診斷熱脫附儀在進行VOC高溫熱脫附時之脫附峰效果,並透過脫附儀器改良,提昇脫附峰形,改善VOC的表現。因此本研究主題分為兩部分,第一部分以C2~C12之標準氣體作為分析對象,對目前自製的熱脫附與分析系統進行診斷。第二部分將第一部分優化的脫附儀應用於VOC吸附材料評估測試,希冀能夠找到具有廣泛吸附範圍、吸脫特性佳的單一材料,取代現有多重碳吸附床之設計。
第一部分為使用自製熱脫附儀搭配氣相層析儀進行熱脫附譜峰診斷。經由診斷的結果顯示,VOC分析系統內部存在著兩個主要的無益體積來源,分別來自熱脫附儀器與中心切割(Heart-Cut)裝置中,由診斷熱脫附峰所獲得的數量化數據的結果,順利地挑選熱脫附儀中最具影響的元件並加以改善,建立了以優化熱脫附與心切技術核心的分析方法,高碳數分子(C6~C12)之對稱性由0.814提升至0.885,層析表現上獲得良好的提升。
第二步部分針對MCM-41、SBA-15、carbon nanotube (CNT)、C60與多重床組合(3-in-1)進行吸附劑測試,其中多重床組合作為參考吸附劑。結果顯示CNT的材料表現突出,在-40℃的捕捉條件下,捕捉的範圍為C3-C12,再搭配Carboxen 1003的吸附劑組成雙重床組合,其捕捉效能與多重床接近,且具有良好的再現性(RSD < 4 %)及線性關係(R2 > 0.99),可作為未來實用之替代方案之一。
摘要(英) Pre-concentration is usually required for gas chromatographic (GC) analysis of the ambient volatile organic compounds (VOCs) due to their trace abundance usually at sub-ppb levels. Peak tailing arising from thermal desorption (TD) and the extra-column effect (dead volume) can occur if not treated with care, resulting in poor resolution and data quality. In addition, sorbent properties also play a critical role in the TD performance. A well-selected sorbent combination helps achieve better TD characteristics and capture of a wider range of VOCs. This study is aimed at characterizing the TD characteristics and improving the TD apparatus using GC with flame ionization detection (FID). As a result, this thesis is dived into two sections: 1. to diagnose the TD properties using a standard mixture containing VOCs from C2 to C12; 2. To optimize the TD device which can be used to assess various sorbents.
Two sources of dead volume were found in the TD-GC/FID system, namely the TD and the Deans switch for heart-cutting. The TD peak without GC separation was assessed for symmetry and width to improve the TD device. The column configuration with the Deans switch was modified by removing the DB-1 column at the down-stream of the Deans switch to the up-stream of the Deans switch to split the TD flow between the DB-1 and the Deans switch. As a result, reduced peak tailing was improved with peak symmetry increased from 0.814 to 0.885 on average.
For the sorbent assessment, the formulation of carbon nanotubes (CNT) plus Carboxen 1003 was found to exhibit the full range trapping of C2-C12 compounds with desired linearity (R2 > 0.99) and reproducibility (RSD < 4%), which was comparable or superior to the three-sorbent bed formulation (Carboxen 1003, Carboxen 1000 and Carbotrap), dubbed as 3-in-1) and could be used as the displacement for 3-in-1.
關鍵字(中) ★ GC-FID
★ 熱脫附
★ 氣相層析
關鍵字(英) ★ Gas chromatography
★ Thermal desorption
論文目次 中文摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章、前言 1
1-1 揮發性有機化合物(VOCs) 1
1-2 光化學反應 3
1-3 研究動機 6
第二章、文獻回顧 9
2-1 VOCs之分析方法 9
2-1-1 人工採樣方法 10
2-1-2 自動即時量測技術 14
2-2 化學吸附劑 19
2-2-1 碳材料 19
2-2-2 奈米碳材料 21
2-2-3 矽材料 27
2-3 峰形變異因子 30
2-3-1 額外管柱效應(Extra-column effects) 31
2-3-1 熱脫附行為 32
第三章、實驗原理及分析方法 35
3-1 層析管柱選用與分析技術介紹 35
3-2 熱脫附(TD)裝置 40
3-2-1 熱脫附儀內部組成 40
3-2-2 前濃縮方法 41
3-2-3 熱脫附儀器(TD)運作機制與流程 44
3-3 實驗系統架構 48
3-3-1 熱脫附儀(TD)優化實驗介紹 50
3-3-2 中心切割裝置優化實驗介紹 54
3-3-3 材料測試實驗介紹 59
第四章、結果與討論 60
4-1 熱脫附儀器優化探討 60
4-1-1 熱脫附儀器優化前後比較 60
4-1-2 優化後自製TD vs. 商業化TD 66
4-2 中心切割裝置優化前後比較 68
4-2-1 優化中心切割裝置 68
4-2-2 Ramp pressure技術應用 73
4-3 吸附劑測試 81
4-3-1 吸附劑基本測試 81
4-3-2 搭配輔助材料Carboxen 1003 88
第五章、結論 92
第六章、參考文獻 93
參考文獻 [1]Wang, C.H., C.C. Chang, and J.L. Wang, Devising an adjustable splitter for dual-column gas chromatography. J Chromatogr A, 2007. 1163(1-2): p. 298-303.

[2]揮發性有機物空氣污染管制及排放標準. 中華民國行政院環境保護署, 2013.

[3]Chang, K.-H., T.-F. Chen, and H.-C. Huang, Estimation of biogenic volatile organic compounds emissions in subtropical island—Taiwan. Science of the Total Environment, 2005. 346(1): p. 184-199.

[4]Pacifico, F., et al., Isoprene emissions and climate. Atmospheric Environment, 2009. 43(39): p. 6121-6135.

[5]http://epa.gov/oar/caa/caaa_overview.html

[6]Atkinson, R., Atmospheric chemistry of VOCs and NO. Atmospheric environment, 2000. 34(12): p. 2063-2101.

[7]http://www.texaninspection.com/home-inspection-air-quality.php.

[8]Durenberger, S., Air toxics: The problem. EPA Journal, 1991. 17(1): p. 30-31.

[9]Ryerson, T., et al., Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science, 2001. 292(5517): p. 719-723.

[10]http://taqm.epa.gov.tw/taqm/zh-tw/b0104.aspx.

[11]Dolan, R.M.M.a.J.W., extracolumn effect. LCGC Trobleshooting, 2004. 1050.

[12]Helmig, D., Air analysis by gas chromatography. Journal of chromatography A, 1999. 843(1): p. 129-146.

[13]TO-14, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, US Environmental Protection Agency (EPA), Cincinnati, OH, 1999.

[14]TO-15, Compendium of Methods for the Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), US Environmental Protection Agency (EPA), Cincinnati, OH, 1999.

[15] TO-17,Compendium of Methods for the Determination of Toxic Volatile Organic Compounds (VOCs) in Ambient Air, US Environmental Protection Agency (EPA), Cincinnati, OH, 1999.

[16]http://www.niea.gov.tw/.

[17]行政院環保署環境檢驗所, 空氣中揮發性含鹵素碳氫化合物檢驗方法-以Tenax-TA 吸附劑採樣之氣相層析法. NIEA A714.10T, 1994.

[18]行政院環保署環境檢驗所, 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法. NIEA A715.13B, 2008.

[19]http://osha.gov/SLTC/indoorairquality/index.html.

[20]Begerow, J., et al., Screening method for the determination of 28 volatile organic compounds in indoor and outdoor air at environmental concentrations using dual-column capillary gas chromatography with tandem electron-capture-flame ionization detection. Journal of Chromatography A, 1996. 749(1-2): p. 181-191.

[21]Osawa, H. and M. Hayashi, Status of the indoor air chemical pollution in Japanese houses based on the nationwide field survey from 2000 to 2005. Building and Environment, 2009. 44(7): p. 1330-1336.

[22]Król, S., B. Zabiegala, and J. Namiesnik, Monitoring VOCs in atmospheric air II. Sample collection and preparation. TrAC Trends in Analytical Chemistry. 29(9): p. 1101-1112.

[23] De Bortoli, M., et al., Performance of a thermally desorbable diffusion sampler for personal and indoor air monitoring. Environment International, 1989. 15(1-6): p. 427-434.

[24]行政院環保署環境檢驗所, 排放管道中氣態有機化合物檢測方法-採樣袋採樣/氣相層析火焰離子化偵測法. NIEA A722.74B, 2008.

[25]行政院環保署環境檢驗所, 排放管道中 C5-C10非極性氣態有機物檢測方法-採樣袋採樣/氣相層析質譜分析法. NIEA A734.70B, 2007.

[26]TO-1, Compendium of Method for the Determination of Volatile Organic Compounds(VOCs) in Ambient Air Using Tenax-TA Adsorption and Gas Chromatography/Mass Spectrometry(GC/MS).US Environmental Protection Agency (EPA), Cincinnati, OH, 1984.

[27]TO-2, Compendium Method for the Determination of Volatile Organic Compounds(VOCs) in Ambient Air by Carbon Molecular Sieve Adsorption and Gas Chromatography/Mass Spectrometry(GC/MS). US Environmental Protection Agency (EPA), Cincinnati, OH, 1984.

[28]行政院環保署環境檢驗所, 排放管道中揮發性有機化合物檢測方法-揮發性有機化合物採樣組裝/氣相層析質譜儀法. NIEA A721.70B, 1997.

[29]Na, K., Determination of VOC source signature of vehicle exhaust in a traffic tunnel. Journal of Environmental Management, 2006. 81(4): p. 392-398.

[30]Na, K., et al., Chemical composition of major VOC emission sources in the Seoul atmosphere. Chemosphere, 2004. 55(4): p. 585-594.

[31]Liu, Y., et al., Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II. Atmospheric Environment, 2008. 42(25): p. 6261-6274.

[32]Yang, K.-L., et al., Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan. Atmospheric Environment, 2005. 39(18): p. 3221-3230.

[33]Chen, S.-P., et al., Diagnostic Modeling of PAMS VOC Observation. Environmental Science & Technology. 44(12): p. 4635-4644.

[34] 林彥宏, VOC前濃縮與預警系統之建構. 國立中央大學化學研究所碩士論文, 民國八十九年七月.

[35] Jimenez, J.L. and D.K. Farmer, Real-time Atmospheric Chemistry Field Instrumentation Analytical Chemistry. 82(19): p. 7879-7884.

[36]Król, S., B. Zabiegala, and J. Namiesnik, Monitoring VOCs in atmospheric air I. On-line gas analyzers. TrAC Trends in Analytical Chemistry. 29(9): p. 1092-1100.

[37]Griffiths, P.R. and A.B. Leytem, Advances in Data Processing for Open-Path Fourier Transform Infrared Spectrometry of Greenhouse Gases??AU - Shao, Limin. Analytical Chemistry. 82(19): p. 8027-8033.

[38]行政院環保署環境檢驗所, 空氣中氣相化合物檢測方法-抽氣式霍氏紅外光光譜分析法. NIEA A001.10C, 2003.

[39] 行政院環保署環境檢驗所, 空氣中揮發性化合物篩檢方法-開徑式傅立葉轉換紅外光光譜分析法. NIEA A002.10C, 2005.

[40]Hong, D.W., et al., Application of the open path FTIR with COL1SB to measurements of ozone and VOCs in the urban area. Atmospheric Environment, 2004. 38(33): p. 5567-5576.

[41]Wanke, T. and J.g. Vehlow, IMR-MS on-line measurements in the exhaust gas of a municipal solid waste incineration pilot plant (Tamara). Chemosphere, 1997. 34(2): p. 345-355.

[42]Lindinger, W., A. Hansel, and A. Jordan, On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. International Journal of Mass Spectrometry and Ion Processes, 1998. 173(3): p. 191-241.

[43]Scotter, J.M., et al., Real-time detection of common microbial volatile organic compounds from medically important fungi by Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). Journal of Microbiological Methods, 2005. 63(2): p. 127-134.

[44]Dewulf, J. and H. Van Langenhove, Anthropogenic volatile organic compounds in ambient air and natural waters: a review on recent developments of analytical methodology, performance and interpretation of field measurements. Journal of Chromatography A, 1999. 843(1-2): p. 163-177.

[45]Sanchez, J.M. and R.D. Sacks, On-line multibed sorption trap and injector for the GC analysis of organic vapors in large-volume air samples. Analytical chemistry, 2003. 75(4): p. 978-985.

[46]王世敏, 許祖勛, and 傅晶, 奈米材料原理與製備. 2004: 五南圖書出版股份有限公司.

[47]Jorio, A., et al., Characterizing carbon nanotube samples with resonance Raman scattering. New Journal of Physics, 2003. 5(1): p. 139.

[48]Beck, J., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114(27): p. 10834-10843.

[49]吳東明, 吳東明學長中孔徑矽分子篩與微孔徑碳分子篩使用於VOC 線上濃縮之吸附性比較. 國立中央大學化學研究所碩士論文, 2005.

[50]李育誠, 矽與碳結構多孔物質作為 VOC 線上濃縮之吸脫附特性比較. 2007.

[51]劉謹瑜, 以中孔徑矽分子篩作為氣相 PAHs 吸附劑之探討. 2008.

[52]廖千宜, 多孔材料吸附特性研究與氣體線上校正方法探討. 國立中央大學化學研究所碩士論文 民國九十八年七月, 2009.

[53]陳海茵, 一氧化碳與二氧化碳分析系統的建立與驗證. 中央大學化學系學位論文, 2006.

[54]黃新維, 利用中孔徑矽分子篩 MCM-41 分離, 量測大氣二氧化碳. 2010.

[55]蘇源昌, 自動氣相層析質譜儀於揮發性有機化合物之分析技術與應用. 中央大學化學系學位論文, 2011.

[56]http://large.stanford.edu/courses/2012/ph240/to1/.

[57]Lettow, J.S., et al., Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir, 2000. 16(22): p. 8291-8295.

[58]Phan, A., et al., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res, 2010. 43(1): p. 58-67.

[59]Park, K.S., et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 2006. 103(27): p. 10186-10191.


[60]Chen, T.-Y., M.-J. Li, and J.-L. Wang, Sub-second thermal desorption of a micro-sorbent trap for the analysis of ambient volatile organic compounds. Journal of Chromatography A, 2002. 976(1): p. 39-45.

[61]Ettre, L., MJE Golay and the invention of open‐tubular (capillary) columns. Journal of High Resolution Chromatography, 1987. 10(5): p. 221-230.

[62]Deans, D.R., A new technique for heart cutting in gas chromatography . Chromatographia, 1968. 1(1-2): p. 18-22.

[63]王介亨, 以Heart-cut技術配合單偵檢器發展氣相層析“剪裁(tailoring)”技術. 國立中央大學化學研究所碩士論文, 2003.

[64]Scanlon, J.T. and D.E. Willis, Calculation of flame ionization detector relative response factors using the effective carbon number concept. Journal of Chromatographic Science, 1985. 23(8): p. 333-340.

[65]http://agage.eas.gatech.edu/instruments-overview.htm.

[66]Miller, B.R., et al., Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Analytical chemistry, 2008. 80(5): p. 1536-1545.

[67]黃映雪, 應用 Heart-cut 技術診斷揮發性有機化合物之熱脫附行為. 2009.

[68]王姵絜, 多孔材料用於揮發性有機物質的吸脫付特性研究. 2013.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2014-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明