博碩士論文 101324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:154 、訪客IP:3.15.190.144
姓名 林宗諺(Tsung Yan Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Biomimetic Taste Receptors with Chiral Recognition by Photoluminescent Metal-Organic Frameworks Chelated with Polyaniline Helices)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用化學感測科技獲取製程中資訊的方式已經改變了,非特定檢測(non-specific detection)在藥物成分分析、食品及飲料品質的監控、以及環境污染檢測等等應用中都是非常重要的技術,而在大自然中,除了視覺、聽覺及嗅覺,味覺在哺乳類動物中扮演了相當重要的角色,哺乳類動物靠著所謂的味道來檢測潛在的食物來源中有毒、及有益的成分,因此,味覺主導了動物的進食行為。靠著酸、甜、苦、鹹、鮮五種基本味覺的排列組合,動物可以分辨高達5000種的味道。現今已有各種電子仿生舌頭及仿生感測器應用於工業檢測中。
在我們先前的研究中,我們曾利用聚丙烯酸螯合在金屬有機架構材料上,利用其客主化學和其光激光特性作為訊號,以模擬舌頭,此感測器加上二維的主成分分析(PCA)可以成功地分辨五種味道,可惜的是,仍然無法分辨對映異構物。因此,在此研究中,我們嘗試以一種具光學活性的螺旋導電高分子(即:聚苯胺)螯合在金屬有機架構材料上(即:[In(OH)(bdc)]n)用以分辨左右旋的有機小分子。
此研究有下列幾點重要貢獻: (1)此感測器具有分辨L-苯丙胺酸和D-苯丙胺酸之間細微的差異的能力,(2)透過各種檢測分析,嘗試推導此感測器的工作原理,(3)此感測器之所以可稱為仿生感測器是因其工作原理與生物體中的G蛋白偶聯受體非常相似。
摘要(英) In the area of measurement technology, the methods for getting information about a process have changed. There is an urgent need for non-specific detections. Processes in food, beverage, and pharmaceutical industries, even the environment monitoring have demands for real-time measurements to ensure the optimal processes. In nature, taste perception is one of the critical senses besides vision, hearing, and olfaction in mammals. It dominates the preference of food intake behaviors. Mammals can detect whether the chemical components in a potential food are vital or fatal by so called “flavors”. This natural sensor can distinguish up to 5000 tastes by combinations of five basic tastes (sweet, umami, bitter, sour, and salty). There were various kinds of artificial sensors designed under the concept of biological receptors in human and other mammals. Most of these sensor arrays based on potentiometric or voltammetric signals were called e-tongues. In our previous work, a biomimetic tongue was demonstrated by the sensor arrays through poly(acrylic acid) chelated [In(OH)(bdc)]n, [In(OH)(bdc)]n, and MOF-76. Unfortunately, this sensor arrays could not distinguish the difference between enantiomers. We thus want to upgrade the biomimetic receptor by introducing polyaniline, a helical optical-active polymer.
There are several significances in this research: (1) the subtle differences between D-phenylalanine and L-phenylalanine could be discriminated by the different photoluminescence responses, (2) the working principles, and interaction modes of (+)-polyaniline chelated [In(OH)(bdc)]n microcrystals were deduced and proposed in detail, (3) it was considered a biomimetic functional material because the behavior of this material was analogous to G-protein coupled receptors in mammals, (4) by introducing various kinds of polymers and made them into sensor arrays, different tastants could be recognized through their own distinct 2-D signal patterns constructed by the photoluminescence responses.


關鍵字(中) ★ 光電子能譜儀
★ (+)-聚苯胺
★ 金屬有機網狀架構
關鍵字(英) ★ X-ray photoelectron spectroscopy
★ (+)-polyaniline
★ Metal organic framework
論文目次 Table of Contents
摘要 i
Abstract ii
Acknowledgement iv
List of Figures x
List of Schemes xv
List of Tables xvi
Chapter 1 1
1.1. The chemical senses: Taste 1
1.2. Mechanisms in taste receptors activation 4
1.2.1. Ion channels 4
1.2.2. G-protein coupled receptors 5
1.3. Brief introduction to taste sensing technology 5
1.4. Conceptual framework 6
1.5. References 9
Chapter 2 11
2.1. Electronic tongues 11
2.1.1. Potentiometric devices 12
2.1.2. Voltammetric devices 13
2.2. Optical chemical sensors 14
2.3. Metal-organic frameworks 15
2.4. Chirality recognition 17
2.5. References 20
Chapter 3 26
3.1. Introduction 26
3.1.1. Metal-organic frameworks 26
3.1.2. Photoluminescence (PL) 28
Ligand-based luminescence 28
Lanthanide luminescence 29
Charge transfer 30
3.1.3. MOF composites 31
3.1.4. Polyaniline 32
3.2. Materials 35
3.2.1. Chemicals 35
3.2.2. Solvents 36
3.3. Analytical instrumentations 37
3.3.1. Transmission fourier transform infrared (FTIR) spectroscopy 37
3.3.2. X-ray photoelectron spectroscopic (XPS) 37
3.3.3. Ultraviolet and visible (UV−vis) spectrophotometry 38
3.3.4. Powder x-ray diffraction (PXRD) 38
3.3.5. Differential scanning calorimetry (DSC) 38
3.3.6. Thermal gravimetric analysis (TGA) 39
3.3.7. Photoluminescence (PL) 39
3.3.8. Scanning electron microscope (SEM) 40
3.3.9. Polarized optical microscopy (OM) 40
3.4. Experimental procedures 41
3.4.1. Synthesis of [In(OH)(bdc)]n microcrystals 41
3.4.2. Synthesis of (+)-polyaniline nanotubes: 42
3.5. Results and discussion 43
3.5.1. [In(OH)(bdc)]n 43
3.5.2. (+)-Polyaniline 48
3.6. Conclusions 54
3.7. References 55
Chapter 4 61
4.1 Introduction 61
4.2. Experimental procedures 66
4.2.1. Polymer chelated [In(OH)(bdc)]n 66
4.2.2. Taste sensing of polymer chelated [In(OH)(bdc)]n 66
4.2.3. UV/vis spectroscopy for (+)-polyaniline configurational studies 67
4.2.4. UV/vis spectroscopy for (+)-polyaniline extraction experiment 67
4.3. Analytical instrumentations 68
4.3.1. X-ray photoelectron spectroscopy (XPS) 68
4.3.2. Ultraviolet and visible (UV−vis) spectrophotometry 68
4.3.3. Circular dichroism (CD) 68
4.3.4. Powder x-ray diffraction (PXRD) 69
4.3.5. Photoluminescence (PL) 69
4.3.6. Scanning electron microscope (SEM) 70
4.3.7. Polarized optical microscopy (OM). 70
4.4. Results and discussion 71
4.5. Conclusions 95
4.6. References 97
Chapter 5 102
5.1. Conclusions 102
5.2. Future works 104
5.2.1. Expanding the sensing targets 104
5.2.2. Fabrication of thin film devices 104
5.3. Preliminary results 105
5.4. Experimental procedures 105
5.4.1. Surface modification 105
5.4.2. [In(OH)(bdc)]n film 105
5.5. References 109




參考文獻 Yamolinsky, D. A.; Zuker, C. S.; Ryba, N. J. P. Common sense about taste: from mammals to Insects. Cell 2009, 139(2) 234-244.
Kinnamon, S. C.; Cummings, T. A. Chemosensory transduction mechanisms in taste. Annu. Rev. Physiol. 1992, 54, 715-731.
MA, H.; Elliot, A.; Lindemeier, J.; Battey, J. F.; Ryba, N. J.; Zuker, C. S. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 1999, 96(4), 541-551.
Breedlove, S. M.; Rosenzweig, M. R.; Watson, N. V. Biological psychology : an introduction to behavioral, cognitive, and clinical neuroscience. Sinauer Associates, Inc., USA, Sunderland, Massachusetts 2010.
Vigues, S.; Dotson, C.D.; Munger, S.D. The receptor basis of sweet taste in mammals, Springer, Germany, Berlin, Heidelberg 2009.
Rosenbaum, D. M.; Rasmussen, S. G. F.; Kobilka B. K. The structure and function of G-protein-coupled receptors. Nature 2009, 459(7245), 356-363.
Tyndall, J. D. A.; Pfeiffer, B.; Abbenante, G.; Fairlie, D. P. Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. Chem. Rev. 2005, 105(3), 793–826.
Agranat, I.; Caner, H. Intellectual property and chirality of drugs. Drug Discovery Today 1999 4(7), 313-321.
Lee, T.; Lee, H. L.; Tsai, M. H.; Cheng, S. L.; Lee, S. W.; Hu, J. C.; Chen, L.T. A biomimetic tongue by photoluminescent metal–organic frameworks. Biosens. Bioelectron. 2013, 43, 56–62.
Agranat, I.; Caner, H. Intellectual property and chirality of drugs. Drug Discovery Today 1999, 4(1), 313-321.
Bentley, R. Role of sulfur chirality in the chemical processes of biology. Chem. Soc. Rev. 2005, 34(7), 609-624.
Weiss-López, B. E.; Azocar, M.; Montecinos, R.; Cassels, B. K.; Araya-Maturana, R. Differential incorporation of l- and d-N-Acyl-1-phenyl-d5-2-aminopropane in a cesium N-dodecanoyl-l-alaninate cholesteric nematic lyomesophase. Langmuir 2001, 17(22), 6910–6914.
Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int. J. Pharm. 2011, 417(1-2), 256-271.
Krantz-Rulcker, C.; Stenberg, M.; Winquist, F.; Lundstrom, I. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review. Anal. Chim. Acta. 2001, 426(2), 217-226.
Escuder-Gilabert, L.; Peris, M. Review: Highlights in recent applications of electronic tongues in food analysis. Anal. Chim. Acta 2010, 665(1), 15-25.
Hayashi, K.; Yamanaka, M.; Toko, K.; Yamafuji, K. Multichannel taste sensor using lipid membranes. Sens. Actuators B 1990, 2(3), 205-213.
Legin, A.; Rudnitskaya, A.; Vlasov, Y.; Natale, C. D.; Davide, F.; D′Amico, A. Tasting of beverages using an electronic tongue. Sens. Actuators B 1997, 44(1-3), 291-296.
Riul Jr, A.; Gallardo Soto, A.M.; Mello, S.V.; Bone, S.; Taylor, D.M.; Mattoso, L.H.C. An electronic tongue using polypyrrole and polyaniline. Synth. Met. 2003, 132(2), 109-116.
Kanai,Y.; Shimizu, M.; Uchida, H.; Nakahara, H.; Zhou, C.G.; Maekawa, H.; Katsube, T. Integrated taste sensor using surface photovoltage technique Sens. Actuators B 1994, 20(2-3), 175-179.
Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Sov. Rev. 2014,
Liu, W.; Jiao, T.; Li, Y.; Liu, Q.; Tan, M.; Wang, H.; Wag, L. Lanthanide coordination polymers and their Ag+-modulated fluorescence. J. Am. Chem. Soc. 2004, 126(8), 2280-2281.
Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F. R.; Xue, M.; Cui, Y.; Qian, G. A luminescent metal–organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 2009, 48(3), 500-503.
Lu, W.-G.; Jiang, L.; Feng, X.-L.; Lu, T.-B. Three-dimensional lanthanide anionic metal−organic frameworks with tunable luminescent properties induced by cation exchange. Inorg. Chem. 2009, 48(15), 6997-6999.
Xu, H.; Xiao, Y.; Rao, X.; Dou, Z.; Li, W.; Cui, Y.; Wang, Z.; Qian, G. A metal-organic framework for selectively sensing of PO43− anion in aqueous solution. J. Alloys Compd. 2011, 509(5), 2552-2554.
Yang, W.; Bai, Z. Q.; Shi, W. Q.; Yuan, L. Y.; Tian, T.; Chai, Z. F.; Wang, H.; Sun,Z. M. MOF-76: from a luminescent probe to highly efficient UVI sorption material. Chem. Commun. 2013, 49(88), 10415-10417.
Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent Metal–organic framework. Angew. Chem. Int. Ed. 2013, 52(10), 2953-2957.
Li, Y.; Zhang, S.; Song, D. A luminescent Metal–organic framework as a turn-on sensor for DMF vapor. Angew. Chem. Int. Ed. 2013, 52(2), 710-713.
Chen, B.; Yang, Y.; Zapata, F.; Lin, G.; Qian, G.; Lobkovsky, E. B. Luminescent open metal sites within a Metal–organic framework for sensing small molecules Adv. Mater. 2007, 19(13), 1693-1696.
Lee, T. Lee, H. L.; Tsai, M. H.; Cheng, S. L.; Lee, S. W.; Hu, J. C.; Chen, L. J. A biomimetic tongue by photoluminescent metal-organic frameworks. Biosens. Bioelectron. 2013, 43, 56-62.
Zhou, J. M.; Shi, W.; Xu, N.; Cheng, P. Highly selective luminescent sensing of fluoride and organic small-molecule pollutants based on novel lanthanide Metal–organic frameworks Inorg. Chem. 2013, 52(14), 8082–8090.
Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. A chiral porous Metal–organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134(22), 9050–9053.
Jiang, H. L.; Feng, D.; Wang, K.; Gu, Z. Y.; Wei, Z.; Chen, Y. P.; Zhou, H. C. An exceptionally stable, porphyrinic Zr Metal–organic framework exhibiting pH-dependent fluorescence J. Am. Chem. Soc. 2013, 135(21), 7795–7798.
Ma, D.; Li, B.; Zhou, X.; Zhou, Q.; Liu, K.; Zeng, G.; Li, G.; Shi, Z.; Feng, S. A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chem. Commun. 2013, 49(79), 8964-8966.
Bentley, R. Role of sulfur chirality in the chemical processes of biology. Chem. Soc. Rev. 2005, 34(7), 609-624.
Weiss-López, B. E.; Azocar, M.; Montecinos, R.; Cassels, B. K.; Araya-Maturana, R. Differential incorporation of l- and d-N-Acyl-1-phenyl-d5-2-aminopropane in a cesium N-dodecanoyl-l-alaninate cholesteric nematic lyomesophase. Langmuir 2001, 17(22), 6910–6914.
Agranat, I.; Caner, H. Intellectual property and chirality of drugs. Drug Discovery Today 1999, 4(1), 313-321.
Kawai, M.; Sekine-Hayakawa, Y.; Okiyama, A.; Ninomiya, Y. Gustatory sensation of l- and d-amino acids in humans, Springer, Germany, Berlin, Heidelberg 2012.
Kyba, E. B.; Koga, K.; Sousa, L. R.; Siegel, M. G.; Cram, D. J. Chiral recognition in molecular complexing J. Am. Chem. Soc. 1973, 95(8), 2692–2693.
Folmer-Anderson, J. F.; Lynch, V. M.; Anslyn, E.V. Colorimetric enantiodiscrimination of α-amino acids in protic media. J. Am. Chem. Soc. 2005, 127(22), 7986-7987.
Xu, Y.; Zheng, L.; Huang, X.; Cheng, Y.; Zhu, C. Fluorescence sensors based on chiral polymer for highly enantioselective recognition of phenylglycinol. Polymer 2010, 51(5), 994-997.
Wangab, Z.; Lu,Y. Functional DNA directed assembly of nanomaterials for biosensing J. Mater. Chem. 2009, 19(13), 1788-1798.
Betard, A.; Fischer, R. A. Metal-organic framework thin films: from fundamentals to applications. Chem. Rev. 2012, 112(2), 1055-1083.
Sun, C. Y.; Wang, X. L.; Qin, C.; Jin, J. L.; Su, Z. M.; Huang, P. Shao, K. Z. Solvatochromic behavior of chiral mesoporous metal–organic frameworks and their applications for sensing small molecules and separating cationic dyes. Chem. Eur. J. 2013, 19(11), 3639-3645.
Kuang, X.; Ma, Y.; Su, H.; Zhang, J.; Dong, Y. B.; Tang, B. High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal–organic framework. Anal. Chem. 2014, 86(2), 1277–1281.
Yaghi, O. M.; Richardson, D. A.; Li, G.; Davis, C. E.; Groy, T. L. Open-framework solids with diamond-like structures prepared from clusters and metal-organic building blocks. Mater Res. Soc. Symp. Proc. 1995, 371, 15-19.
Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp. J. T. Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc., 2012, 134(36), 15016–15021.
James, S. L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32(5), 276–288.
Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1294-1314.
Li, J.-R.; Kuppler R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1477-1504.
Chen, C.; Zhang, M.; Guan, Q.; Li, W. Kinetic and thermodynamic studies on the adsorption of xylenol orange on to MIL-101 (Cr). Chem. Eng. J. 2012, 183, 60-67.
Gomez-Lor, B.; Gutierrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Ruiz-Valero, C.; Snejko, N. In2(OH)3(BDC)1.5 (BDC = 1,4-Benzendicarboxylate): An In (III) suparmolecular 3D framework with catalytic activity. Inorg. Chem. 2002, 41(9), 2429-2432.
Zhao, B.; Chen, X.-Y.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H. Coordination polymers containing 1D channels as selective luminescent probes. J. Am. Chem. Soc. 2004, 126(47), 15394-15395.
Chen, B.; Xiang, S.; Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Accounts Chem. Res. 2010, 43(8), 1115-1124.
Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112(2), 1232-1268.
Lee, T.; Liu, Z. X.; Lee, H. L. A biomimetic nose by microcrystals and oriented films of luminescent porous metal-organic frameworks. Cryst. Growth Des. 2011, 11 (9), 4146-4154.
Lee, T. Lee, H. L.; Tsai, M. H.; Cheng, S. L.; Lee, S. W.; Hu, J. C.; Chen, L. J. A biomimetic tongue by photoluminescent metal-organic frameworks. Biosens. Bioelectron. 2013, 43, 56-62.
Yang, G. S.; Li, M. N.; Li, S. L.; Lan, Y. Q.; He, W. W.; Wang, X. L.; Qina, J. S.; Su, Z. M. Controllable synthesis of microporous, nanotubular and mesocage-like metal–organic frameworks by adjusting the reactant ratio and modulated luminescence properties of Alq3@MOF composites. J. Mater. Chem. 2012, 22(34), 17947-17953.
Cui, Y.; Chen, B.; Qian, G. Luminescent properties and applications of metal-organic frameworks, Springer, Germany, Berlin, Heidelberg 2009.
Wang, G. H.; Li, Z. G.; Jia, H. Q.; Hu, N. H.; Xu, J. W. Metal–organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, and photoluminescence. CrystEngComm 2009, 11, 292–297.
Zou, J. P.; Peng, Wen, Q. Z. Zeng, G. S.; Xing, Q. J.; Guo, G. C. Two novel metal−organic frameworks (MOFs) with (3,6)-connected net topologies: syntheses, crystal structures, third-order nonlinear optical and luminescent properties. Cryst. Growth Des. 2010, 10(6), 2613–2619.
Hermes, S.; Zacher, D.; Baunemann, A.; Wöll, C.; Fischer, R. A. Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers. Chem. Mater. 2007, 19(9), 2168–2173.
Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita, Y.; Kitagawa, S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand:  selective sorption and catalysis. J. Am. Chem. Soc. 2007, 129(9), 2607–2614.
Rieter, W. J.; Taylor, K. M. L.; Lin, W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129 (32), 9852–9853
Rowe, M. D.; Thamm, D. H.; Kraft, S. L.; Boyes, S. G. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 2009, 10(4), 983–993.
Stejskal, J. Kratochvíl, P.; Jenkins, A. D.; Polyaniline: forms and formation. Collect. Czech. Chem. Commun. 1995, 60(10), 1747-1755.
Syed, A. A.; Dinesan, M. K. Review: Polyaniline—A novel polymeric material. Talanta 1991, 38(8), 815-837.
Gomes, A. D. S. New polymers for special applications, INTECH, Winchester, UK, 2012.
Majidi, M. R.; Kane-Maguire, L. A.P.; Wallace, G. G. Chemical generation of optically active polyaniline via the doping of emeraldine base with (+)- or (−)-camphorsulfonic acid. Polymer 1995, 36(18) 3597-3599.
Ashraf, S. A.; Kane-Maguire, L. A.P.; Majidi, M. R.; Pyne, S. G.; Wallace, G. G. Influence of the chiral dopant anion on the generation of induced optical activity in polyanilines. Polymer 1997, 38(11) 2627-2631.
Yin, X.; Ding, J.; Zhang, S.; Kong, J. Enantioselective sensing of chiral amino acids by potentiometric sensors based on optical active polyaniline films. Biosens. Bioelectron. 2006, 21, 2184-2187.
Genies, E. M.; Syed, A.A.; Tsintavis, C. Electrochemical study of polyaniline in aqueous and organic medium. redox and kinetic properties. Mol. Cryst. Liq. Cryst. 1985, 121(1-2), 181-186.
Akhtar, M.; Weakliem, H. A.; Paiste, R.M.; Gaughan, K. Polyaniline thin film electrochromic devices. Synth. Met. 1988, 26(3), 203-208.
Kaneko, M.; Nakamura, H. Photoresponse of a liquid junction polyaniline film. J. Chem. Soc., Chem. Commun. 1985, (6) 346-347.
Gholamian, M.; Sundaram, J.; Contractor, A. Q. Oxidation of formic acid at polyaniline-coated and modified-polyaniline-coated electrodes. Langmuir 1987, 3(5), 741–744.
Syed, A. A.; Dinesan, M. K.; Polyaniline: Reaction stoichiometry and use as an ion-exchange polymer and acid/base indicator. Synth. Met. 1990, 36(2), 209-215.
Huang, J.; Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126(3), 851–855.
Anokhina, E. V.; Vougo-Zanda, M.; Wang, X.; Jacobson, A. J. In(OH)BDC•0.75BDCH2 (BDC = Benzenedicarboxylate), a hybrid inorganic−organic vernier structure. J. Am. Chem. Soc. 2005, 127(43), 15000-15001.
Zhang, L.; Peng, H.; Zujovic, Z. D.; Kilmartin, P. A.; Travas-Sejdic, Characterization of polyaniline nanotubes formed in the presence of amino acids. J. Macromol. Chem. Phy. 2007, 208(11), 1210-1217.
Kang, E.T.; Neoh, K.G.; Khor, S.H. X.P.S. studies of charge transfer interactions in some polyaniline complexes Polymer 1990, 31(2), 202-207.
Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. Polyaniline nanofibers:  facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125(2), 314–315.
Hoon, M. A.; Adler, E.; Lindemeier, J. F. B.; Ryba, N. J. P.; Zuker, C. S. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 1999, 96(4), 541-551.
Vigues, S.; Dotson, C.D.; Munger, S.D. The receptor basis of sweet taste in mammals, Springer, Germany, Berlin, Heidelberg 2009.
Rosenbaum, D. M.; Rasmussen, S. G. F.; Kobilka B. K. The structure and function of G-protein-coupled receptors. Nature 2009, 459(7254), 356-363.
Rubenstein, L. A.; Zauhar, R. J.; Lanzara, R. G. Molecular dynamics of a biophysical model for β2-adrenergic and G protein-coupled receptor activation. J. Mol. Graphics Modell. 2006, 25(4), 396-409.
Kawai, M.; Sekine-Hayakawa, Y.; Okiyama, A.; Ninomiya, Y. Gustatory sensation of l- and d-amino acids in humans, Springer, Germany, Berlin, Heidelberg 2012.
Agranat, I. Intellectual property and chirality of drugs. Caner, H. Drug Discovery Today 1999 4(7), 313-321.
Kyba, E. B.; Koga, K.; Sousa, L. R.; Siegel, M. G.; Cram, D. J. Chiral recognition in molecular complexing. J. Am. Chem. Soc. 1973, 95(8), 2692–2693.
Folmer-Anderson, J. F.; Lynch, V. M.; Anslyn, E.V. Colorimetric enantiodiscrimination of α-amino acids in protic media. J. Am. Chem. Soc. 2005, 127(22), 7986-7987.
Xu, Y.; Zheng, L.; Huang, X.; Cheng, Y.; Zhu, C. Fluorescence sensors based on chiral polymer for highly enantioselective recognition of phenylglycinol Polymer 2010, 51(5), 994-997.
Wangab, Z.; Lu,Y. Functional DNA directed assembly of nanomaterials for biosensing. J. Mater. Chem. 2009, 19(13), 1788-1798.
Cui,Y.; Chen, B.; Qian, G. Luminescent properties and applications of metal-organic frameworks, Springer, Germany, Berlin, Heidelberg 2013.
Chen, B.; Yang, Y.; Zapata, F.; Lin, G.; Qian, G.; Lobkovsky, E. B. Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv. Mater. 2007, 19(13), 1693-1696.
Zhou, J. M.; Shi, W.; Li, H. M.; Li H.; Cheng, P. Experimental studies and mechanism analysis of high-sensitivity luminescent sensing of pollutional small molecules and ions in Ln4O4 cluster based microporous metal–organic frameworks. J. Phys. Chem. C 2014, 118(1), 416–426.
Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T. J.; Li, J. New microporous metal−organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J. Am. Chem. Soc. 2011, 133(12), 4153–4155.
Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 2012, 112(2), 1126–1162.
Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. A chiral porous metal–organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134(22), 9050–9053.
Sun, C. Y.; Wang, X. L.; Qin, C.; Jin, J. L.; Su, Z. M.; Huang, P. Shao, K. Z. Solvatochromic behavior of chiral mesoporous metal–organic frameworks and their applications for sensing small molecules and separating cationic dyes. Chem. Eur. J. 2013, 19(11), 3639-3645.
Kuang, X.; Ma, Y.; Su, H.; Zhang, J.; Dong, Y. B.; Tang, B. High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal–organic framework. Anal. Chem. 2014, 86(2), 1277–1281.
Lee, T.; Lee, H. L.; Tsai, M. H.; Cheng, S. L.; Lee, S. W.; Hu, J. C.; Chen, L.T. A biomimetic tongue by photoluminescent metal–organic frameworks. Biosens. Bioelectron. 2013, 43, 56–62.
Zhang, X.; Yin, J.; Yoon, J. Recent advances in development of chiral fluorescent and colorimetric sensors. Chem. Rev. 2014, 114(9), 4918–4959.
Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. Polyaniline nanofibers:  facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125(2), 314–315.
Majidi, M. R.; Kane-Maguire, L. A. P.; Wallace, G. G. Chemical generation of optically active polyaniline via the doping of emeraldine base with (+)- or (−)-camphorsulfonic acid. Polymer 1995, 36(18), 3597-3599.
Ashraf, S. A.; Kane-Maguire, L. A.P.; Majidi, M. R.; Pyne, S. G.; Wallace, G. G. Influence of the chiral dopant anion on the generation of induced optical activity in polyanilines. Polymer 1997, 38(11), 2627-2631.
Guo, H.; Knobler, C. M.; Kaner. R. B. A chiral recognition polymer based on polyaniline. Synth. Met. 1999, 101(1-3), 44-47.
Yan, Y.; Yu, Z.; Huang, Y. W.; Yuan, W. X.; Wei, Z. X. Helical polyaniline nanofibers induced by chiral dopants by a polymerization process. Adv. Mater. 2007, 19(20), 3353-3357.
Fresco, J. R.; Alberts, B. M. The accomodation of noncomplementary bases in helical polyribonucleotides and deoxyribonucleic acids. Proc. Natl. Acad. Sci. 1960, 46(3), 311–321.
Guschlbauer, W. Protonated polynucleotide structures. I. The thermal denaturation of polycytidylic acid in acid solution. Proc. Natl. Acad. Sci. 1967, 57(5), 1441–1448.
Zhang, L.; Peng, H.; Zujovic, Z. D.; Kilmartin, P. A.; J. Travas-Sejdic, Characterization of polyaniline nanotubes formed in the presence of amino acids. J. Macromol. Chem. Phys. 2007, 208(11), 1210-1217.
Anokhina, E. V.; Vougo-Zanda, M.; Wang, X.; Jacobson, A. J. In(OH)BDC•0.75BDCH2 (BDC = Benzenedicarboxylate), a hybrid inorganic−organic vernier structure. J. Am. Chem. Soc. 2005, 127(43), 15000-15001.
Kang, E.T.; Neoh, K.G.; Khor, S.H. X.P.S. studies of charge transfer interactions in some polyaniline complexes. Polymer 1990, 31(2), 202-207.
Vickerman, J. C.; Gilmore, I. S. Surface Analysis – the Principle Techniques, Wiley, Seatle, USA 2009.
Weber, P. C.; Salemme F. R. Structural and functional diversity in 4-α-helical proteins Nature 1980, 287, 4-6.
Efimov, A.V. Packing of α-helices in globular proteins. Layer-structure of globin hydrophobic cores. J. Mol. Biol. 1979, 134(1), 23-40.
Zacher, D.; Shekhah, O.; Wöll, C.; Fischer, R. A. Thin films of metal–organic frameworks. Chem. Soc. Rev. 2009, 38(5), 1418–1429.
Nogueira, G. M.; Banerjee, D.; Cohen, R. E.; Rubner, M. F. Spray-layer-by-layer assembly can more rapidly produce optical-quality multistack heterostructures. Langmuir 2011, 27(12), 7860–7867.
Bétard, A.; Fischer,R. A. Metal-organic framework thin films: from fundamentals to applications. Chem. Rev. 2012, 112(2), 1055-1083.
Castner, D. G. X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 1996, 12(21), 5083-5086.
Scherb, C.; Williams, J. J.; Hinterholzinger, F.; Bauer, S.; Stockc N.; Bein, T. Implementing chemical functionality into oriented films of metal–organic frameworks on self-assembled monolayers. J. Mater. Chem. 2011, 21(38), 14849–14856.
Ramos-Fernandez, E. V.; Garcia-Domingos, M.; Juan-Alcaniz, J.; Gascon, J.; Kapteijn, F. MOFs meet monoliths: hierarchical structuring metal organic framework catalysts Appl. Catal. A 2011, 391(1-2), 261–267.
指導教授 李度(Tu Lee) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明