博碩士論文 983404004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:18.220.200.33
姓名 林逸全(Yi-chuan Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鋰離子電池磷酸亞鐵鋰陰極材料之製程改質研究
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究
★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要

目前全球高動力鋰離子電池系統的發展主要集中在鋰錳電池、鋰鈷鎳錳電池以及磷酸亞鐵鋰電池,其中磷酸亞鐵鋰陰極材料具有高電容量、高放電功率、極佳的長迴圈壽命,以及良好的熱穩定性與高溫性能等優點,已成為動力鋰離子電池首選的高安全性陰極材料。然而,磷酸亞鐵鋰材料本質上仍有導電度差、振實密度小、工作電壓低等缺點。因此,本論文結合多項新穎觀念與技術應用於磷酸亞鐵鋰材料,以改善材料缺點。本論文主要研究目的分為三大部分:
一、 提高粉體振實密度,以改善電芯加工性;
二、 金屬摻雜磷酸亞鐵鋰,以增強電化學性能;
三、 引入高電壓磷酸基團材料於磷酸亞鐵鋰,以提升平均工作電壓;
第一部分吾人將結合碳熱還原法與融鹽法,製備出橄欖石結構之LiFePO4陰極材料。為了提高粉體的振實密度,利用碳熱還原法所合成的LiFePO4/C複合材料,將其壓成錠後置於氧化鋁杯中,並且錠周圍以KCl包覆;最後再將氧化鋁杯置於管狀高溫爐中,於755 ℃高溫下進行煆燒1.0小時。KCl融鹽介質將能有效地影響材料的單位晶格體積,以及粉體的表面型態與振實密度,並且進一步地改變LiFePO4/C的電化學性能。經由融鹽法改質前後的LiFePO4/C複合材料,將使用X光繞射圖譜(XRD)、掃描電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、動態光散射儀(DLS)、拉曼光譜、振實密度測試儀等進行一系列鑑定。最後,經過融鹽法改質的LiFePO4產物具有高振實密度為1.5 g cm-3,含有4.58 wt.%碳含量,並且於2.8-4.0 V截止電壓與0.2 C-rate充放電速率下,其放電電容量為141 mAh g-1。因此,藉由融鹽法改質,將使得LiFePO4/C複合材料不僅具有高振實密度,同時展現出不錯的放電電容量。
第二部份吾人利用高溫固態法,以癸二酸為碳源,摻雜鈣離子(Ca2+),製備出橄欖石結構之LiFe1-xCaxPO4/C複合材料,其晶體結構與電化學性質將作進一步地鑑定。吾人採用同步輻射X光繞射圖譜分析材料結構,發現鈣離子摻雜於LiFePO4材料,不會影響本身的晶體結構變化,但是單位晶格體積卻些微地增大。電化學性能測試結果顯示,LiFe0.99Ca0.01PO4/C複合材料於2.8-4.0 V截止電壓與0.2 C-rate充放電速率下,具有最佳放電電容量為149 mAh g-1,其電容量的提升來自於材料導電度與鋰離子擴散速度的增加。此外,LiFe0.99Ca0.01PO4/C複合材料將可承受20 C-rate大電流充放電,相當於充放電僅需要3分鐘。
由於磷酸釩鋰(Li3V2(PO4)3)、磷酸氟鋰釩(LiVPO4F)、磷酸錳鋰(LiMnPO4)等磷酸基團化合物具備高工作電壓特性,近期已成為鋰離子電池陰極材料之熱門研究主題,第三部份將利用共沉澱法與碳熱還原法,嘗試引入LiVPO4F於LiFePO4材料中,製備出xLiFePO4‧(1-x)LiVPO4F (LFP-LVPF)複合材料,以提升LiFePO4材料之工作電壓。將採用X光繞射圖譜(XRD)、掃描電子顯微鏡(SEM)、總有機碳含量分析儀(TOC)等鑑定分析一系列LFP-LVPF複合材料之材料特性。當莫耳數比LFP : LVPF (即x : (1-x))為1:0、0.99:0.01、0.75:0.25、0.5:0.5、0.25:0.75、0:1時,LFP-LVPF複合材料之0.2 C放電電容量將分別為153、160、132、106、92與78 mAh g-1,其放電電容量將隨著LVPF莫耳數增加而減少。此外,混掺較多LVPF莫耳數之LFP-LVPF複合材料,即x : (1-x)為0.75:0.25、0.5:0.5、0.25:0.75之樣品,其工作電壓高於LiFePO4材料,而且位於4.35/4.15 V之充電/放電電壓平台,將隨著LVPF莫耳數的增加而變長。
摘要(英) Abstract

Globally, the development of high-power lithium-ion batteries is focused on lithium manganese oxide batteries, lithium cobalt nickel manganese batteries and lithium iron phosphate batteries. Lithium iron phosphate is regarded as a practical and popular cathode material for high power lithium-ion batteries due to its high capacity, high rate capability, long cycle life, superior thermal stability and good high-temperature performance. However, the intrinsic disadvantages of pure LiFePO4 material are its poor electronic conductivity, low tap density and low operating voltage. Therefore, we combined a number of innovative concepts and techniques in the fabrication processes to alleviate the aforementioned problems. The main purpose of this study has been divided into three sections:
(1) To improve the manufacturing process of battery cells by enhancing the tap density of LiFePO4 powders.
(2) To enhance the electrochemical performance by doping the metal ions into LiFePO4 crystal.
(3) To increase the average operating voltage by introducing the phosphate-based compounds with high working voltage into LiFePO4 material.
Olivine-structured LiFePO4 cathode materials were prepared via a combination of carbothermal reduction (CR) and molten salt (MS) methods. To enhance the tap density of powders, the LiFePO4/C composite was pressed into pellets and then sintered for at least 1 h at 1028 K in the reaction environment of KCl molten salts. The use of molten salt can effectively influence unit cell volume, morphology and tap density of particles, and consequently change the electrochemical performance of LiFePO4/C. The composites were characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and tap density testing. The final product with high tap density of 1.50 g cm−3 contains 4.58 wt.% carbon and exhibits good discharge capacity of 141 mAh g−1 at a 0.2 C-rate in the potential range of 2.8-4.0 V.
These olivine LiFe1-xCaxPO4/C composites (x = 0 ~ 0.014) were synthesized by a solid-state method using sebasic acid as a carbon source. The structure and electrochemical properties of the LiFe1-xCaxPO4/C compounds were studied. The X-ray diffractometer (XRD) results indicated that Ca2+ doping did not affect the structure of the samples, but the unit cell volume of the doped samples was slightly increased. Electrochemical measurements showed that the LiFe0.99Ca0.01PO4/C composite delivered a discharge capacity of 149 mAh g-1 at a 0.2 C-rate between 4.0 and 2.8 V, probably due to the significant improvement in electronic conductivity and Li+ ion diffusion. The cell could also sustain a 20 C-rate, and this rate capability is equivalent to charge or discharge in 3 min.
Phosphate-based compounds with a high working voltage, such as Li3V2(PO4)3, LiVPO4F and LiMnPO4, have been proposed as a new class of cathode materials for lithium-ion batteries. To improve the operating voltage of LiFePO4, we introduced LiVPO4F to the preparation of xLiFePO4‧(1-x)LiVPO4F (LFP-LVPF) composites through an aqueous precipitation and carbothermal reduction method. A series of LFP-LVPF composites have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and total organic carbon (TOC) analysis. The discharge capacities of LFP-LVPF composites for x:(1-x) = 1:0, 0.99:0.01, 0.75:0.25, 0.5:0.5, 0.25:0.75 and 0:1 at a 0.2 C-rate were 153, 160, 132, 106, 92 and 78 mAh g-1, respectively. The discharge capacity decreased with increasing mole fraction of LVPF. Moreover, the operating voltage of LFP-LVPF composites for x:(1-x) = 0.75:0.25, 0.5:0.5 or 0.25:0.75 is higher than that of LFP, and the charge/discharge plateaus around 4.35/4.15 V for LFP-LVPF composites become longer as the value of x decreases.
關鍵字(中) ★ 鋰離子電池
★ 陰極材料
★ 磷酸亞鐵鋰
關鍵字(英) ★ Lithium ion battery
★ Cathode
★ Lithium iron phosphate
論文目次 目 錄

摘 要
............................................................................................................................... I
致 謝 .............................................................................................................................. VI
目 錄 ............................................................................................................................. VII
圖 目 錄 .......................................................................................................................... XI
表 目 錄 ..................................................................................................................... XVIII
第一章 緒論 .................................................................................................................... 01
1.1 前言 ................................................................................................................... 01
1.2 鋰離子電池陰極材料簡介 ............................................................................... 03
1.3 研究目的及架構 ............................................................................................... 09
第二章 文獻回顧 ............................................................................................................ 12
2.1晶體結構分析 .................................................................................................... 12
2.2碳塗佈層改質 .................................................................................................... 16
2.3金屬摻雜改質...................................................................................................... 19
2.4粒徑大小對磷酸亞鐵鋰之影響.......................................................................... 20
2.5提升磷酸亞鐵鋰之振實密度.............................................................................. 24
2.6高電壓磷酸基團正極材料之混摻改質.............................................................. 27
2.7磷酸亞鐵鋰之鐵磁性物質研究.......................................................................... 30
2.8磷酸亞鐵鋰之同步輻射X光研究 ................................................................... 34
第三章 實驗方法 ............................................................................................................ 43
3.1 實驗儀器設備 ................................................................................................... 43
3.2 實驗藥品器材 ................................................................................................... 44
3.3 實驗步驟 ........................................................................................................... 46
3.3.1 以融鹽法結合碳熱還原法合成磷酸亞鐵鋰粉體 .................................... 46
3.3.2 以融鹽法結合碳熱還原法合成LiFePO4/C複合材料之實驗流程圖..... 47
3.3.3 以高溫固態法摻雜Ca金屬,製備LiCaxFe1-xPO4/C複合材料............... 48
3.3.4 以高溫固態法合成LiCa0.01Fe0.99PO4/C複合材料之實驗流程圖............. 49
3.3.5 以共沉澱法結合碳熱還原法合成xLiFePO4.(1-x)LiVPO4F/C複合材料
...................................................................................................................... 50
3.3.6 以共沉澱法結合碳熱還原法合成xLiFePO4.(1-x)LiVPO4F/C複合材料之
實驗流程圖 ................................................................................................. 52
3.4 材料鑑定分析....................................................................................................... 53
3.4.1 X光繞射儀 (X-ray Diffractometer, XRD) .............................................. 53
3.4.2 動態光散射 (Dynamic Light Scattering, DLS) ......................................... 53
3.4.3 總有機碳分析儀(Total Organic Carbon, TOC Analyzer) ........................ 53
3.4.4 導電度測試 .................................................................................................. 54
3.4.5 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) .................... 54
3.4.6 高解析穿透式電子顯微鏡 (High Resolution Transmission Electron Microscope, HR-TEM) .............................................................................. 54
3.4.7 顯微拉曼光譜 (Microscopes Raman Spectrum ) .................................... 54
3.4.8 微分掃描熱卡儀(Differential Scanning Calorimeter, DSC)................ 55
3.4.9 表面積測試(Brunauer Emmett Teller, BET)....................................... 55
3.5 材料電化學特性分析 ......................................................................................... 56
3.5.1. 電池性能測試 ............................................................................................. 56
3.5.2. 慢速循環伏安分析(Slow scan cyclic voltammetry) ................................. 58
3.6 同步輻射之實驗儀器配置 ................................................................................. 60
3.6.1 X光繞射光譜之原理 ................................................................................... 60
3.6.2 X光繞射光譜之實驗設置 ........................................................................... 63
3.6.3 X光吸收光譜之原理 ................................................................................... 64
3.6.3.1 X光吸收近邊緣結構 (XANES) ............................................................... 66
3.6.3.2 延伸X光吸收微細結構 (EXAFS) ......................................................... 67
3.6.3.3 X光吸收圖譜之數據分析 ....................................................................... 69
第四章 結果與討論 ......................................................................................................... 72
4.1 結合碳熱還原法與融鹽法製備高振實密度LiFePO4/C複合材料................. 72
4.1.1 X光繞射圖譜分析融鹽二次煆燒之LiFePO4/C複合材料.................... 73
4.1.2融鹽二次煆燒LiFePO4/C複合材料之粒徑分佈與掃描式電子顯微鏡觀測
......................................................................................................................... 76
4.1.3 融鹽二次煆燒LiFePO4/C複合材料之穿透式電子顯微鏡分析............ 79
4.1.4 融鹽二次煆燒LiFePO4/C複合材料之拉曼光譜測試.............................. 81
4.1.5 KCl融鹽二次煆燒時間變因之材料特性與電化學測試分析................ 83
4.1.6 碳源添加量變因之材料特性與電化學測試分析.................................... 86
4.1.7 大電流充放電測試及其特徵曲線測試圖................................................. 88
4.1.8 慢速循環伏安測試........................................................................................ 89
4.2以高溫固態法摻雜Ca金屬,製備LiFe1-xCaxPO4/C複合材料.................. 94
4.2.1 X光繞射圖譜分析Ca金屬摻雜之LiFe1-xCaxPO4/C複合材料........... 94
4.2.2 X光吸收圖譜分析Ca金屬摻雜之LiFe1-xCaxPO4/C複合材料........... 96
4.2.3 LiFe0.9Ca0.01PO4/C複合材料之表面形態................................................ 98
4.2.4 Ca金屬摻雜LiFe1-xCaxPO4/C複合材料之材料特性分析................... 100
4.2.5 慢速循環伏安測試...................................................................................... 101
4.2.6充放電測試及其長循環性能圖................................................................... 103
4.2.7 大電流充放電測試及其特徵曲線測試圖.................................................. 104
4.3利用共沉澱法與碳熱還原法,製備出xLiFePO4.(1-x)LiVPO4F碳複合材料
............................................................................................................................. 106
4.3.1 X光繞射圖譜分析xLiFePO4.(1-x)LiVPO4F碳複合材料..................... 107
4.3.2 xLiFePO4.(1-x)LiVPO4F碳複合材料之掃描式電子顯微鏡觀測.......... 110
4.3.3 xLiFePO4.(1-x)LiVPO4F碳複合材料之殘留碳量、振實密度與電子導電度.................................................................................................................... 111
4.3.4 xLiFePO4.(1-x)LiVPO4F碳複合材料之充放電測試及其長循環性能圖.................................................................................................................... 112
4.3.5 慢速循環伏安測試 ..................................................................................... 116
第五章 結論 ..................................................................................................................... 119
第六章 參考文獻 ............................................................................................................. 125
參考文獻 參考文獻

01. 姚慶意, “鋰鐵磷電池的發展與運用”, 工業材料雜誌, 255期, 185-190頁, 2008年3月.
02. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
03. R. Koksbang, J. Barker, H. Shi, M.Y. Saidi, Solid State lonics 84 (1996) 1-21.
04. J. Kim, B.H. Kim, Y.H. Baik, P.K. Chang, H.S. Park, K. Amine, J. Power Sources 158 (2006) 641.
05. R. Sathiyamoorthi, P. Shakkthivel, S. Ramalakshmi, Y.G. Shul, J. Power Sources 171 (2007) 922.
06. 江峻諺, “高工作電壓鋰鎳錳氧正極材料之合成與其電化學行為的改善”, 國立清華大學 材料工程學系 碩士論文, 2008年7月.
07. L.S. Cahill, S.C. Yin, A. Samoson, I. Heinmaa, L.F. Nazar, G.R. Goward, Chem. Mater. 17 (2005) 6560.
08. 張忠勝, “鋰離子電池 LiNi1/3Co1/3Mn1/3O2陰極材料之製程開發與改質研究”, 碩士論文, 國立中央大學 化學工程與材料工程學系, 2007年7月.
09. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Electrochemical Society Meeting Abstracts 96-1 (1996) 73.
10. T. Ohzuku, R.J. Brodd, J. Power Sources 174 (2007) 449.
11. S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater. 1 (2002) 123.
12. S. Malcus, “Lithium Ionen Batterien in der Automobilindustrie”, Innovationsallianz LIB 2015, Deutschland, 2006.
13. H. Berg, H. K. Rundlo, J. O. Thomas, Solid State Ionics 144 (2001) 65.
14. H. Liu, Y.P. Wu, E. Rahm, R. Holze, H. Q. Wu, J. Solid State Eletrochem. 8 (2004) 450.
15. 許家興, “電動車電池類型與電池基礎介紹”, 車輛研測資訊, 財團法人車輛研究測試中心, 2009年10月.
16. 台灣立凱電能科技股份有限公司, http://www.aleees.com/files/engpp1.pdf
17. T. Ohzuku, R.J. Brodd, J. Power Sources 174 (2007) 449.
18. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Gooclenough, J. Electrochem. Soc. 144 (1997) 1609.
19. C. Delmas, M. Maccario, L. Croguennec, F. Lecras, F. Weill, Nat. Mater. 7 (2008) 665.
20. N. Ravet, J.B. Goodenough, S. Besner, Electrochemical Society Fall Meeting, Honolulu, Hawaii, 1999.
21. H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid-State Lett. 4 (2001) A170.
22. Z. Chen, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A1184.
23. Y.D. Cho, G.T.K. Fey, H.M. Kao, J. Power Sources 189 (2009) 256.
24. S.J. Kwon, C.W. Kim, W.T. Jeong, K.S. Lee, J. Power Sources 137 (2004) 93.
25. H.C. Shin, W. Cho, H. Jang, J. Power Sources 159 (2006) 1383.
26. A.D. Spong, G. Vitins, J.R. Owenz, J. Electrochem. Soc. 152 (2005) A2376.
27. M.R. Yang, T.H. Teng, S.H.Wu, J. Power Sources 159 (2006) 307.
28. M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Electrochem. Solid-State Lett. 6 (2003) A207.
29. G.T.K. Fey, T.L. Lu, F.Y. Wu, W.H. Li, J. Solid State Electrochem 12 (2008) 825.
30. G. Meligrana, C. Gerbaldi, A. Tuelb, S. Bodoardo, N. Penazzi, J. Power Sources 160 (2006) 516.
31. D. Choi, P.N. Kumta, J. Power Sources 163 (2007) 1064.
32. F. Gao, Z. Tang, J. Xue, Electrochim. Acta 53 (2007) 1939.
33. J.M. Chen, C.H. Hsu, Y.R. Lin, M.H. Hsiao, G.T.K. Fey, J. Power Sources 184 (2008) 498.
34. C.Z. Lu, G.T.K. Fey, H.M. Kao, J. Power Sources 189 (2009) 155.
35. A.V. Murugan, T. Muraliganth, A. Manthiram, Electrochem. Commun. 10 (2008) 903.
36. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnika, J. Electrochem. Soc. 152 (2005) A607.
37. A.A. Salah, A. Mauger, K. Zaghib, J.B. Goodenough, N. Ravet, M. Gauthier, F. Gendron, C.M. Juliena, J. Electrochem. Soc. 153 (2006) A1692.
38. G.T.K. Fey, T.L. Lu, J. Power Sources 178 (2008) 807.
39. X.Z. Liao, Z.F. Ma, L. Wang, X.M. Zhang, Y. Jiang, Y.S. He, Electrochem. Solid-State Lett. 7 (2004) A522.
40. H.P. Liu, Z.X.Wang, X.H. Li, H.J. Guo,W.J. Peng, Y.H. Zhang, Q.Y. Hu, J. Power Sources 184 (2008) 469.
41. H. Liu, P. Zhang, G. C. Li, Q. Wu, Y. P. Wu, J. Solid State Electr. 12 (2008) 1011.
42. L.N. Wang, Z.G. Zhang, K.L. Zhang, J. Power Sources 167 (2007) 200.
43. C.H. Mi, X.G. Zhang, X.B. Zhao, H.L. Li, J. Alloys Compd. 424 (2006) 327.
44. K.F. Hsu, S.Y. Tsay, B.J. Hwang, J. Power Sources 146 (2005) 529.
45. D. Shanmukaraj, G.X. Wang, R. Muruganc, H.K. Liu, Mater. Sci. Eng. B 149 (2008) 93.
46. C.Y. Ouyang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, L.Q. Chen, J. Phys. Condens. Matter. 16 (2004) 2265.
47. M.R. Roberts, G. Vitins, J.R. Owen, J. Power Sources 179 (2008) 754.
48. C. Delacourt, C. Wurm, L. Laffont, J.B. Leriche, C. Masquelier, Solid State Ionics 177 (2006) 333.
49. S.H. Wu, M.S. Chen, C.J. Chien, Y.P. Fu, J. Power Sources 189 (2009) 440.
50. H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Electrochem. Commun. 8 (2006) 1553.
51. Y.D. Cho, G.T.K. Fey, H.M. Kao, J. Solid State Electr. 12 (2008) 815.
52. M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun. 9 (2007) 2778.
53. Y. Xia, M. Yoshio, H. Noguchi, Electrochim. Acta 52 (2006) 240.
54. G.T.K. Fey, Y.G. Chen, H.M. Kao, J. Power Sources 189 (2009) 169.
55. J.F. Ni,H.H. Zhou, J.T. Chen,X.X. Zhang, Mater. Lett. 61 (2007) 1260.
56. F. Gao,Z.Y. Tang,J.J. Xue, J. Univ. Sci. Technol. B 15 (2008) 802.
57. H.M. Xie, R.S. Wang, J.R. Ying, L.Y. Zhang, A.F. Jalbout, H.Y. Yu, G.L. Yang, X.M. Pan, Z.M. Su, Adv. Mater. 18 (2006) 2609.
58. J. Li, “Spin Dynamics of LiNiPO4 and LiFePO4”, http://www.cmpgroup.ameslab.gov/NeutronXrayScattering/project.html#ME effect
59. L. Yang, G. Liang, L. Wang, X. Zhi, X. Ou, J. Alloys Compd. 496 (2010) 376.
60. S.M. Oh, S.W. Oh, S.T. Myung, S.M. Lee, K.Y. Sun, J. Alloys. Compd. 506 (2010) 372.
61. E.J. Kim, H.U.Xu, J.S. Lim, J.W. Kang, J.H. Gim, V. Mathew, J. Kim, J. Solid State Electr. 16 (2011) 149.
62. J. Wolfenstine, J.L. Allen, J. Power Sources 136 (2004) 150.
63. A. Yamada, M. Hosoya, S.C. Chung, Y. Kudo, K. Hinokuma, K.Y. Liu, Y. Nishi, J. Power Sources 119–121 (2003) 232.
64. C.M. Burba, R. Frech, J. Power Sources 172 (2007) 870.
65. J. Hong, F. Wang, X. Wang, J. Graetz, J. Power Sources 196 (2011) 3659.
66. D. Wang, Z. Wang, X. Huang, L. Chen, J. Power Sources 146 (2005) 580.
67. G.H. Li, H. Azuma, M. Tohda, J. Electrochem. Soc. 149 (2002) A743.
68. S.C. Yin, P.S. Strobel, H. Grondey, L.F. Nazar, Chem. Mater. 16 (2004) 1456.
69. J. Barker, R.K.B. Gover, P. Burns, A. Bryan, M.Y. Saidi, J.L. Swoyer, J. Power Sources 146 (2005) 516.
70. T. Drezen, N.H. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar, J. Power Sources 174 (2007) 949.
71. M.R. Yang, W.H. Ke, S.H. Wu, J. Power Sources 165 (2007) 646.
72. K. Zaghib, A. Mauger, F. Gendron, C.M. Julien, Solid State Ionics 179 (2008) 16.
73. C.W. Kim, J.S. Park, K.S. Lee, J. Power Sources 163 (2006) 144.
74. Md.M. Rahman, J.Z. Wang, R. Zeng, D. Wexler, H.K. Liu, J. Power Sources 206 (2012) 259.
75. A. Bianconi, in: D.C. Konongsberger, R. Prins (Eds.), X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, vol. 573, John Wiley and Sons, New York, 1988.
76. K.F. Hsu, S.K. Hu, C.H. Chen, M.Y. Cheng, S.Y. Tsay, T.C. Chou, H.S. Sheu, J.F. Lee, B.J, Hwang, J. Power Sources 192 (2009) 660.
77. A.A.M. Prince, S. Mylswamy, T.S. Chan, R.S. Liu, B. Hannoyer, M. Jean, C.H. Shen, S.M. Huang, J.F. Lee, G.X. Wang, Solid State Commun. 132 (2004) 455.
78. 鄭信民, 林麗娟, “X光繞射應用簡介”, 工業材料雜誌, 工研院材料所微結構分析實驗室, 2002年1月.
79. H.C. Shin, K.Y. Chung, W.S. Min, D.J. Byun, H. Jang, B.W. Cho, Electrochem. Commun. 10 (2008) 536.
80. M.S. Chen, S.H. Wu, W.K. Pang, J. Power Sources 241 (2013) 690.
81. G.X. Wang, S. Needham, J. Yao, J.Z. Wang, R.S. Liu, H.K. Liu, J. Power Sources 159 (2006) 282.
82. H.H. Chang, C.C. Chang, H.C. Wu, M.H. Yang, H.S. Sheu, N.L. Wu, Electrochem. Commun. 10 (2008) 335.
83. V. Drozda, G.Q. Liu, R.S. Liu, H.T. Kuo, C.H. Shen, D.S. Shy, X.K. Xing, J. Alloys. Compd. 487 (2009) 58.
84. T. Nedoseykina, M.G. Kim, S. Park, H.S. Kim, S.B. Kim, J. Cho, Y. Lee, Electrochim. Acta 55 (2010) 8876.
85. F. Pan, W.L. Wang, H.J. Li, X.D. Xin, Q.Q. Chang, W.S. Yan, D.M. Chen, Electrochim. Acta 56 (2011) 6940.
86. A. Fedorková, R. Orináková, A. Orinák, M. Kupková, H.D. Wiemhöfer, J.N. Audinot, J. Guillot, Solid State Sci. 14 (2012) 1238.
87. N.V. Kosova, E.T. Devyatkina, A.I. Ancharov, A.V. Markov, D.D. Karnaushenko, V.K. Makukha, Solid State Ionics 225 (2012) 564.
88. Q.Q. Chang, G.H. Yao, F.F. Pan, D.M. Chen, W.L. Wang, W.S. Yan, Electrochim. Acta 108 (2013) 211.
89. P.P. Ma, P. Hu, Z.J. Liu, J.H. Xia, D.G. Xia, Y. Chen, Z.G. Liu, Z.C. Lu, Electrochim. Acta 106 (2013) 187.
90. 蔡英文, “以臨場X光吸收光譜及繞射光譜研究鋰離子電池正極材料充放電之現象”, 博士論文, 國立台灣科技大學 化學工程系, 2004年7月.
91. 張碧容, “ABO3微波介電材料的光譜研究”, 碩士論文, 國立台灣師範大學 物理學系, 2004年7月.
92. 王健源, “鋰離子二次電池與直接甲醇燃料電池負極材料及儲氫合金材料之研究”, 博士論文, 國立台灣大學 化學系, 2004年7月.
93. A. Bonanni, “Synchrotron Radiation”, http://magicspin.jku.at/synchrotron.php
94. 員鳳屏, “龐磁阻錳氧化物薄膜之應變效應”, 碩士論文, 國立中山大學 物理學系, 2007年7月.
95. 李志甫, “X光吸收光譜術操作說明書”, 同步輻射中心, 新竹, 台灣, 1997年.
96. J. Ying, M. Lei, C. Jiang, C. Wan, X. He, J. Li, L. Wang, J. Ren, J. Power Sources 158 (2006) 543.
97. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn., chapter 5.2, Prentice Hall Publishers, New Jersey, USA, 2001.
98. P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics 148 (2002) 45.
99. L.Q. Sun, R.H. Cui, A.F. Jalbout, M.J. Li, X.M. Pan, R.S. Wang, H.M. Xie, J. Power Sources 189 (2009) 522.
100. Y. Hu, M.M. Doeff, R. Kostecki, R. Finones, J. Electrochem. Soc. 151 (2004) A1279.
101. S.W. Oh, S.T. Myung, S.M. Oh, C.S. Yoon, K. Amine, Y.K. Sun, Electrochim. Acta 55 (2010) 1193.
102. Y. Liang, X. Han, X. Zhou, J. Sun, Y. Zhou, Electrochem. Commun. 9 (2007) 965.
103. Z.R. Chang, H.J. Lv, H.W. Tang, H.J. Li, X.Z. Yuan, H. Wang, Electrochim. Acta 54 (2009) 4595.
104. M.E. Zhong, Z.T. Zhou, Mater. Chem. Phys. 119 (2010) 428.
105. X.F. Guo, H. Zhan, Y.H. Zhou, Solid State Ionics 180 (2009) 386.
106. Z.G. Lu, M.F. Lo, C.Y. Chung, J. Phys. Chem. C 112 (2008) 7069.
107. D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokaw, S. Fujitania, J. Electrochem. Soc. 154 (2007) A253.
108. K. Tang, X. Yu, J. Sun, H. Li, X. Huang, Electrochim. Acta 56 (2011) 4869.
109. A. Kumar, R. Thomas, N.K. Karan, J.J. Saavedra-Arias, M.K. Singh, S.B. Majumder, M.S. Tomar, R.S. Katiyar, J. Nanotechnol. (2009) (Article ID: 176517).
110. C. Park, S.B. Park, S.H. Oh, H. Jang, W.I. Cho, Bull. Korean Chem. Soc. 32 (2011) 836.
111. H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu, J. Power Sources 159 (2006) 717.
112. A.V. Churikov, A.V. Ivanishchev, I.A. Ivanishcheva, V.O. Sycheva, N.R. Khasanova, E.V. Antipov, Electrochim. Acta 55 (2010) 2939.
113. B. Zhao, Y. Jiang, H. Zhang, H. Tao, M. Zhong, Z. Jiao, J. Power Sources 189 (2009) 462.
114. S. Yang, X. Zhou, J. Zhang, Z. Liu, J. Mater. Chem. 20 (2010) 8086.
115. Y. Liu, C. Mi, C. Yuan, X. Zhang, J. Electroanal. Chem. 628 (2009) 73.
116. Y. Cui, X. Zhao, R. Guo, J. Alloys. Compd. 490 (2010) 236.
117. T. Qu, Y.W. Tian, Y.C. Zhai, Chinese Journal of Nonferrous Metals 17 (2007) 1255.
118. Y. Zhu, C. Wang, J. Phys. Chem. C 114 (2010) 2830.
119. H. Fang, G. Liang, L. Zhao, T. Wallace, H. Arava, L.L. Zhang, A. Ignatov, M.C. Croft, J. Electrochem. Soc. 160 (2013) A3148.
120. F. Omenya, N.A. Chernova, Q. Wang, R. Zhang, M.S. Whittingham, Chem. Mater. 25 (2013) 2691.
121. C. Wang, X. Ma, J. Cheng, L. Zhou, J. Sun , Y. Zhou, Solid State Ionics 177 (2006) 1027.
122. J.R. Dahn, J. Jiang, L.M. Moshurchak, M.D. Fleischauer, C. Buhrmester, L.J. Krausec, J. Electrochem. Soc. 152(6) (2005) A1283.
123. M.R. Yang,W.H. Ke, S.H.Wu, J. Power Sources 146 (2005) 539.
124. S.M. Oh, H.G. Jung, C.S. Yoon, S.T. Myung, Z. Chen, K. Amine, Y.K. Sun, J. Power Sources 196 (2011) 6924.
125. M. Sato, H. Ohkawa, K. Yoshida, M. Saito, K. Uematsu, K. Toda, Solid State Ionics 135 (2000) 137.
126. J.C. Zheng, X.H. Li, Z.X. Wang, S.S. Niu, D.R. Liu, L. Wu, L.J. Li, J.H. Li, H.J. Guo, J. Power Sources 195 (2010) 2935.
127. Y. Huang, H. Ren, Z. Peng, Y. Zhou, Electrochim. Acta 55 (2009) 311.
128. J. Barker, R.K.B. Gover, P. Burns, A. Bryan, M.Y. Saidi, J.L. Swoyer, J. Electrochem. Soc. 152 (2005) A1776.
129. F. Zhou, X. Zhao, J.R. Dahn, Electrochem. Commun. 11 (2009) 589.
130. J. Hong, X.L. Wang, Q. Wang, F. Omenya, N.A. Chernova, M.S. Whittingham, J. Graetz, J. Phys. Chem. C 116 (2012) 20787.
131. A. Kelly, K.M. Knowles, Crystallography and Crystal Defects, second ed., John Wiley & Sons, Ltd., New York, 2012. Appendix 7.
132. J.C. Zheng, X.H. Li, Z.X. Wang, J.H. Li, L.J. Li, L. Wu, H.J. Guo, Ionics 15 (2009) 753.
133. L.L. Zhang, G. Liang, A. Ignatov, M.C. Croft, X.Q. Xiong, I.M. Hung, Y.H. Huang, X.L. Hu, W.X. Zhang, Y.L. Peng, J. Phys. Chem. C 115 (2011) 13520.
134. N. Hua, C. Wang, X. Kang, T. Wumair, Y. Han, J. Alloys Compd 503 (2010) 204.
135. P.P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, S. Passerini, M. Pasquali, J. Electrochem. Soc. 149 (2002) A886.
136. Y. Huang, H. Ren, S. Yin, Y. Wang, Z. Peng, Y. Zhou, J. Power Sources 195 (2010) 610.
137. M. Giorgetti, M. Berrettoni, S. Scaccia, S. Passerini, Inorg. Chem. 45 (2006) 2750.
138. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, J. Power Sources 195 (2010) 5768.
139. Q. Zhang, S. Zhong, L. Liu, J. Liu, J. Jiang, J. Wang, Y. Li, J. Phys. Chem. Solids 70 (2009) 1080.
140. M.Y. Saidi, J. Barker, H. Huang, J.L. Swoyer, G. Adamson, Electrochem. Solid State Lett. 5 (2002) A149.
指導教授 費定國(Ting-kuo Fey) 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明