以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:20 、訪客IP:3.14.133.5
姓名 蔡育霖(Tsai Yu-Lin) 查詢紙本館藏 畢業系所 水文與海洋科學研究所 論文名稱 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究
(The Development of Storm SurgeFast Calculation System and the Reconstruction of 1845 Yunlin Kouhu Event)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 過去數十年,許多學者利用數值模式進行風暴潮研究與速算系統之發展,但大部分模式仍有諸多限制,例如受限小區域之計算域,無法完整涵蓋颱風生命週期之風暴潮模擬,或者僅限於卡氏座標系統。因此,本研究以康乃爾大學所之開放原始碼(Open Source)多重網格海嘯模式COMCOT(Cornel Multi-grid Coupled of Tsunami Model)為基礎進行風暴潮模式之開發,並於理想條件下進行解析解之驗證。在氣象力導入部分,本研究耦合理想颱風模式Holland Model(1980)、CWB Model和大氣模式TWRF(Typhoon Weather Research and Forecasting),並且以2011年南瑪都颱風(Tyhpoon Nanmadol)和2013年蘇力颱風(Typhoon Soulik)為實際案例進行模式校驗,模擬結果和實測資料有良好之比對結果。
西元1845年(清道光25年)農曆六月初七,雲林縣口湖鄉沿海村莊因颱風暴潮影響俱為大水吞沒,超過三千人喪生,為台灣歷史上最嚴重之水災,罹難民眾就地掩埋為萬人塚,並由道光皇帝賜名萬善同歸弔祭此事件(曾,1978;金,2002)。本研究以數值模式為主,輔以野外調查,還原1845年雲林口湖歷史風暴潮事件。由近代歷史風暴潮紀錄,1986年韋恩颱風為第一個由臺灣西部直接登陸之颱風,登陸時雖僅為中度颱風,卻造成中部地區嚴重之海水倒灌,因此選定韋恩颱風為1845年雲林口湖事件之參考案例。模擬結果顯示,颱風直接由臺灣西部登陸之路徑於雲林口湖地區之暴潮偏差有高度敏感性。
本研究討論氣候變遷下與韋恩颱風相同路徑之強烈颱風事件,同時以2013年海燕颱風(Typhoon Haiyan)參數代入情境模擬,模擬結果顯示於雲林口湖地區最高有4.45公尺之暴潮偏差,若未來發生類似路徑之強烈颱風,於麥寮和梧棲等中部地區應嚴防海水倒灌之災害。摘要(英) Several storm surge models had been developed in the last decades for the purposes of research and early warning. However, some deficiencies limit the model application. For example, small computational domain makes simulating the complete life cycle impossible, not to mention adopting the Cartesian coordinate system.
In this study, the open-source code, COMOCOT (Cornel Multi-grid Coupled of Tsunami Model), was chosen for developing the storm surge model, and validated with analytic solutions for the meteorological forcing terms. Parametric model, such as Holland model (1980) and CWB model, and TWRF Model (Typhoon Weather Research and Forecasting) were coupled into the code. The 2011 Typhoon Nanmadol and 2013 Typhoon Soulik events were chosen for model validation. The result comparison with the observation data was in the good agreement.
After the model development and validation, we further applied this model to the case of 1845 Kouhu storm surge event. In that event, nine villages were destroyed by a disastrous flood, and more than 3,000 inhabitants were killed. It was the most serious storm surge event in Taiwan. In this study, efforts were made for reconstructing this storm surge. According to the modern historical records, the 1986 Typhoon Wayne was the only one case that effected Kouhu significantly and chosen as the reference case. The simulation results showed that the surge deviation in Yunlin Kouhu was highly sensitive to the typhoon route if the typhoon lands at the western coast of Taiwan.
Considering the global climate change, the meteorological parameters of the 2013 Typhoon Haiyan and the route of 1986 Typhoon Wayne were adopted. The simulation results showed that the 4.45 m surge deviation was observed in Yunlin Kouhu. Some places in middle Taiwan, such as Wuchi and Mailiao, were under the threat of inland flooding.關鍵字(中) ★ COMCOT
★ 風暴潮速算系統
★ 台灣風暴潮作業模式
★ 1845年雲林口湖事件關鍵字(英) ★ COMCOT
★ Storm Surge Fast Calculation System
★ Taiwan Operational Storm Surge Model
★ 1845 Yunlin Kouhu event論文目次 一、 緒論..............................................................................................................1
1.1 研究背景與動機.....................................................................................1
1.2 文獻回顧.................................................................................................4
1.2.1 風暴潮研究之文獻回顧..............................................................4
1.2.2 風暴潮速算系統與作業化模式之文獻回顧..............................9
1.2.3 COMCOT 風暴潮模式開發之文獻回顧 ..................................13
1.2.4 歷史風暴潮事件之文獻回顧....................................................15
1.3 研究方法...............................................................................................18
二、 數值模式介紹............................................................................................19
2.1 數值模式簡介.......................................................................................19
2.2 統御方程式...........................................................................................20
2.2.1 線性淺水波方程式....................................................................21
2.2.2 線性淺水波方程式之有限差分離散........................................22
2.2.3 非線性淺水波方程式................................................................24
2.2.4 非線性淺水波方程式之中央差分離散....................................27
2.3 移動邊界法...........................................................................................32
2.4 巢狀網格系統.......................................................................................34
2.5 大氣模式耦合.......................................................................................37
2.5.1 Holland Model ............................................................................37
2.5.2 CWB Model................................................................................38
2.5.3 TWRF Model..............................................................................41
2.5.4 風剪力和風場向量....................................................................43
2.6 風暴潮速算系統介紹...........................................................................45
三、 模式校驗....................................................................................................48
3.1 邊界條件測試.......................................................................................48
3.2 解析解驗證...........................................................................................54
3.2.1 壓力梯度之解析解驗證............................................................54
3.2.2 風剪力之解析解驗證................................................................62
3.3 歷史個案分析.......................................................................................69
3.3.1 地形與網格設置........................................................................69
3.3.2 數值潮位計設置........................................................................70
3.3.3 南瑪都颱風................................................................................73
3.3.4 蘇力颱風..................................................................................130
四、 1845 年雲林口湖風暴潮事件還原.........................................................198
4.1 雲林口湖風暴潮事件介紹.................................................................198
4.2 韋恩颱風.............................................................................................201
4.2.1 韋恩颱風介紹..................................................................201
4.2.2 1986 年韋恩颱風之數值模擬..................................................203
4.2.3 模擬結果之序列資料比較......................................................219
4.2.4 韋恩颱風模擬之結果與討論..................................................233
4.3 雲林口湖事件之還原.........................................................................234
4.3.1 雲林口湖事件情境還原之數值模擬......................................234
4.3.2 雲林口湖事件還原之暴潮偏差時序列資料比較..................250
4.3.3 雲林口湖事件還原之結果與討論..........................................263
五、 結論與建議..............................................................................................264
5.1 結論.....................................................................................................264
5.2 建議.....................................................................................................265
六、 參考文獻..................................................................................................266參考文獻 1.Cheung, K.F., A.C. Phadke, Y. Wei, R. Rojas, Y.J.-M. Douyere, C.D. Martino, S.H. Houston, P.L.-F. Liu, P.J. Lynett, N. Dodd, S. Liao, E. Nakazaki (2003), Modeling of storm-induced coastal flooding for emergency management, Ocean Eng., vol. 30, pp.1353-1386
2.Flather, R.A. and Proctor, R. (1983) Prediction of North Sea storm surges using numerical models: recent developments in the U.K. In: Sundermann, J. & Lens, W. (eds), North Sea dynamics. Springer, Berlin, pp. 95-107.
3.Flather, R.A. (1993) A Storm Surge Prediction Model for the Northern Bay of Bengal with Application to the Cyclone Disater in April 1991, Journal of Physical Oceanography, 24, pp.172-188
4.Feng, X., B. Yin, D. Yang (2012) Effect of hurricane paths on storm surge response at Tianjin, China, Estuarine, Coastal and Shelf Science, 106, pp.58-68
5.Hsiao L.-F., D.-S. Chen, Y.-H. Kuo, Y.-R. Guo, T.-C. Yeh, J.-S. Hong, and C.-T. Fong (2012) Application of WRF 3DVAR to Operational Typhoon Prediction in Taiwan: Impact of Outer Loop and Partial Cycling Approaches, American Meteorological Society, pp.1249-1263
6.Jelesnianski, C. P., J. Chen and Wilson A. Shaffer (1992) SLOSH: Sea, Lake, and Overland Surges form Hurricanes
7.Lascaratos, A., Krestenitis, Y. and Nittis, K. (1991) Experimental and numerical studies of storm surges in the Aegean Sea. EEC, DG-XII programme, Temporal and Spatial variability of major floods around European Coasts
8.Lin, Yu-Hsien, Ming-Chung Fang and Hwung-Hweng Hwung (2010) Transport Reversal Due to Typhoon Krosa in the Taiwan Strait. The Open Ocean Engineering Journal, 3, 143-157
9.Luettich R. A. Jr., J. J. Westerink (1992) ADRIRC: An Advanced Three-dimensional Circulation Model for Shelves, Coasts, and Estuaries
10.Lionello, P., A. Sanna, E. Elvini, R. Mufato (2006) A data Assimilation Procedure for Operational Prediction of Storm Surge in the Northern Adriatic Sea, Continental Shelf Research, vol. 26, pp.539-553
11.Ozer, J., Deleersnijder, E. and Jamart, B. (1990) Model intercomparison: description of a semi-implicit numerical model for the shallow-water wave equations. MUMM’s contribution to MAST-0050-C (SMA), Technical Report, 1.
12.Pugh, D.T. (1987) Tides, surges and mean sea level. John Wiley & Sons.
13.Salomon, J.C. and Breton, M. (1990) Modele general du plateau continental Nord Europeen. Rapport au Programme CEE-MAST 89 0093, FLUXMANCHE.
14.Sheng, Y. Peter, On Modeling Three-dimensional Estuarine and Marine Hydrodynamics
15.Sheng, Y. Peter, Y. Zhang, V. A. Paramygin (2010) Simulation of Storm Surge, Wave, and Coastal Inundation in the Northeastern Gulf of Mexico Region during Hurricane Ivan in 2004
16.Smith, S.D. and Banke, E.G. (1975) Variation of the sea surface drag coefficient with wind speed. Quart. J. Roy. Meteorol. Soc., 101, 665-673.
17.Verboom, G.K., De Ronde, J.G. and Van Dijk, R.P. (1992) A fine grid tidal flor and storm surge model of North Sea. Cont. Shelf Res., 12, 213-233
18.Smith, S.D., E.G.. Banke (1975) Variation of the sea surface drag coefficient with wind speed. Quart. J. R. Met. Soc.,101,p.665-p.673
19.Garratt, J.R., (1977) Review of drag coefficients over oceans and conditions. Monthly weather Review, Vol.105,p.915-p.929
20.Wu, Jim (1980) Wind-stress coefficients over sea surface near neutral conditions. Journal of Physical Oceanography, Vol.10,p.727-p.740
21.Yu, C. S., M. Fettweis, I. Hermans and J. Berlamont (1989) Tidal flow simulation in the English Channel and Southern North Sea, Adv. Water Resources, 1989, Volume 12, December P.194-P.203
22.Tang. Y., R. Grimshaw, B. Sanderson, and G,. Holland (1996) A numerical study of storm surges and tides, with application to the North Queensland Coast. Journal of physical Oceanography, Vol.26, 2700pp.
23.Large, W. G. and S. Pond (1981),Open ocean momentum fluxes in moderate to strong winds, J. Phys. Oceanogr., vol. 11, pp. 324-336
24.Powel,l M. D., P. J. Vivker, and T. A. Reinhold (2003) Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, vol. 422,pp. 278-283
25.A. Harper and G. J. Holland (1999) , An updated parametric model of the tropical cyclone, in In: Proceedings of the 23rd Conference of Hurricane and Tropical Meteorology Dallas, Texas,pp. 893-896
26.Holland, G. J. (1980), An analytic model of the wind and pressure profiles in hurricanes, Monthly Weather Rev., vol. 108, pp. 1212-1218
27.Phadke, C. Martino, K. F. Cheung, and S. H. Houston (2003), Modeling of tropical cyclone winds and waves for emergency management, Ocean Eng., vol. 30, pp.553-578
28.Zhang, W.Z., H.-S. Hong, S.-P. Shang, D.-W. Chen, and F. Chai (2007), A two-way nested coupled tide-surge model for the Taiwan Strait, Continental shelf research, vol. 27, pp.1548-1567
29.楊春生,”臺灣北岸暴潮推算之研究”,臺南水工試驗所土木水利學術彙刊,pp.49-63,1974。
30.黃壽銘,”花蓮港暴潮推算之研究”,國立台灣大學海洋研究所碩士論文,1975。
31.曾人口,”金湖春秋”,中國詩文之友社,1978。
32.王志文,”感性與理性:鄉士神話的科學探討-以金湖牽狀為例”,pp.391-427,2002。
33.李豐楙,”金湖文化祭”,pp.10-17,1996。
34.徐泓,”清代臺灣天撫災害史料彙編”,行政院國家科學委員會防災科技研究報告72-01號,1983。
35.魏靖松,”暴潮統計分析及數值推算”,國立成功大學水利及海洋研究所碩士論文,1976。
36.李賢文,”沿海窪地與海水推升之研究(1)-台灣周圍海域颱風暴潮數值模式”,防災科技研究報告,1984。
37.李賢文,台灣鄰近海域潮汐預報數值模式,1989。
38.劉肖孔,”臺灣海域颱風暴潮及氣象潮數值預報模式研究計畫”,第三階段成果報告,中央氣象局研究報告第279 號,1987。
39.于嘉順,”中央氣象局多尺度暴潮模式預報作業改進及長期暴潮水位模擬分析研究(1/3)”,交通部中央氣象局委託研究計畫成果報告,2005。
40.白愷中,”臺灣海域風暴潮預報模式校驗與敏感度分析”, 國立中山大學海洋環境及工程學系研究所碩士論文,2009
41.高家俊,” 資料同化應用於颱風暴潮數值預報之研究”,行政院國家科學委員會專題研究計畫,2005
42.何明錦、薩支帄、曾志民,”易受海潮海嘯侵襲地區土地使用與建築減災管理對策”,內政部建築研究所研究報告,2006
43.張倉榮和余化龍,”發展西北太平洋海岸颱風威脅機率季度預測方法”,交通部中央氣象局委託研究計畫期末成果報告,2010
44.李忠潘、陳陽益、邱永芳、許泰文、張憲國、薛憲文、王兆璋、劉景毅、余嘉順、蘇青和、陳冠宇、廖建明、劉正琪、錢維安、許友貞、余孟娟,”規劃海象觀測網、暴潮數值最佳網格化系統”,交通部運輸研究所暨國立中山大學合作辦理,2004
45.許泰文、蔡長泰、王永和、張有德,”海岸淹溢模式之建立與應用”,第21屆海洋工程研討會論文集,1999
46.李賢文,”台灣鄰近海域潮汐預報數值模式”,第二屆海洋數值模式研習會論文集,港灣技術研究所,P.179-P.195,1989
47.黃榮鑑、姚家琪,”颱風暴潮三維數值模式研究”,第17屆海洋工程研討會暨1995兩岸港口及海岸開發研討會論文集p.315-p.332,1995
48.許泰文,”近岸水動力學”,台北市:科技圖書,2003
49.詹森、王玉懷、邱朝聰,”台灣海峽短期預報系統之發展”,2001海洋數值模式研討會,2001
50.邱銘達、高家俊、逢智源、江俊儒,”颱風暴潮數值推算確度提升之研究”,第28屆海洋工程研討會論文集p.253-p.258,2006
51.于嘉順、江朕榮、尤皓正,”台灣近岸海象預報模式系統(TaiCOMS)-近海潮位及海流模擬”,第28屆海洋工程研討會論文集-台灣近岸海象預報模式系統(TaiCOMS)技術報告,P.26-P.47,2006a
52.于嘉順、江朕榮、尤皓正、徐月娟、朱啟豪,”西太平洋颱風暴潮模式敏感度分析”,第28屆海洋工程研討會論文集P.259-P.263,2006b
53.莊丈傑、蔡丁貴、江中權,”潮流數值模擬邊界條件之設定”,2001 海洋數值模式研討會論丈集,交通部運輸研究所港灣技術研究中心,p.1-31頁指導教授 吳祚任、劉立方(Tso-Ren Wu Philip Li-Fang Liu) 審核日期 2014-8-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare