博碩士論文 962203025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.119.161.161
姓名 林昆億(Kun-Yi Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 鋰離子電池LiCoO2 陰極材料之表面修飾有機化合物及電池性能研究
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前在電池產業中,LiCoO2為最廣泛使用的陰極材料,為了提高電池實際應用時的電容量,則必須將充電上限截止電位提高至更高的電位,但是充電上限截止電位提高造成晶體結構不穩定和電解質大量地分解,導致電池循環性能快速地下降,並且衍生出電池安全性的潛在風險,除此之外,形成於陰極表面的鈍化膜不僅阻礙鋰離子的傳遞,並且造成電池內部阻抗持續地上升。
  改良LiCoO2於高電位時電化學性能的方法有許多種,常見的改良方法為將陰極材料表面塗佈金屬氧化物或是金屬磷酸化合物,以塗佈層作為保護層改善晶體結構穩定性並且避免活性材料與電解質直接接觸。
  本研究中,首先使用機械熱處理法以TiO2對LiCoO2陰極材料進行表面改質,再將有機物修飾於陰極材料表面,以表面塗佈的TiO2改善陰極材料的結構穩定性,以表面修飾的有機物避免活性粒子表面的過渡金屬與電解質直接接觸,抑制特定形成鈍化膜的反應;本研究中於陰極材料表面修飾之有機物不僅具有相當佳的電化學穩定性,而且改質後的陰極材料釋放氧氣時的反應焓降低37 ~ 41 %、鈍化膜的分解溫度提高20 ~ 22°C、電池內部的介面阻抗明顯地下降。
  本研究確證以TiO2對LiCoO2進行表面修飾,具有穩定晶體結構、增加電池循環穩定性和改善電池熱穩定性等優點;而於修飾TiO2之LiCoO2表面再修飾有機物時,不但可強化上述性能,並且可抑制陰極表面形成鈍化膜,降低電池內部的介面阻抗。
摘要(英) In order to obtain a higher capacity from LiCoO2, it must be charged to higher potential but this leads to a rapid capacity loss thought to be caused by side reactions with the electrolyte at high potentials as well as structural instability. The chemical and electrochemical side reactions occurs at the electrode/electrolyte interface, which formation surface layer on the electrode. The surface layer create a barrier for Li+ ions during electrochemical charge/discharge cycling. This barrier increases cell impedance and decreases cycling efficiency of the battery.
  Many efforts have been paid to improve the electrochemical performance of LiCoO2 at high voltages. An effective strategy is to coat the surface of the materials with various metal oxides and metal phosphates. The surface coating itself acts as a protective layer not only to prevent a direct contact of the active core material with the electrolyte solution, but also improves the structural stability.
  In this study, a mechano-thermal process is employed to form coating of TiO2 on LiCoO2 surface which is subsequently functionalized with long chain poly-ether or polyether oligomer. TiO2 coating on the surface to improves the crystal structure stability. And the organic compounds modified on the surface to prevent a direct contact of the transitional metal on the cathode surface with the electrolyte solution. The organic compounds displayed fair electrochemical stability even if the potential is elevated to 4.5V. The organic modification altered cathode surface properties which inhibits specific reaction to form surface layer. The reaction enthalpy of oxygen release from LixCoO2 is reduce 37~41 %, and surface layer decompose temperature elevate 20 ~ 22°C.
  From these results, we conclude that TiO2 coating on LiCoO2 particles surface suppress capacity fading, stabilize crystal structure, elevate upper cut-off potential and improve battery thermal stability. Subsequent functionalization with poly-ether or polyether oligomer not only strengthens the above-mentioned performance, it hinders the formation of passivation layer, and prevents the continual increase of internal resistance during long term operation.
關鍵字(中) ★ 表面修飾
★ 鋰電池
★ 鈷酸鋰
★ 陰極材料
關鍵字(英) ★ surface modification
★ LiCoO2
★ cathode material
★ Lithium battery
論文目次 中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1  前言 1
1-2  鋰離子電池之發展背景介紹 1
1-3  鋰離子電池之陰極材料介紹 3
1-4  鋰離子電池之鈍化膜介紹 5
1-5  研究動機與目的 7
第二章 文獻回顧 9
2-1 陰極材料的表面改質 9
2-1-1 以Al2O3對LiCoO2進行表面改質 10
2-1-2 以MgO對LiCoO2進行表面改質 14
2-1-3 以ZrO2對LiCoO2進行表面改質 16
2-1-4 以TiO2對LiCoO2進行表面改質 18
2-1-5 以Carbon對LiCoO2進行表面改質 20
2-1-6 以LiMn2O4對LiCoO2進行表面改質 21
2-1-7 以LiFePO4對LiCoO2進行表面改質 23
2-1-8 以LiCoPO4對LiCoO2進行表面改質 25
2-1-9 以polymer對LiCoO2進行表面改質 26
2-2 陰極材料表面改質對電池性能影響之原因探討 28
第三章 實驗方法 37
3-1 實驗儀器設備 37
3-2 實驗藥品器材 38
3-3 實驗步驟 39
3-3-1 以機械熱處理法利用TiO2對LiCoO2進行表面改質 40
3-3-2 以二乙二醇乙醚對陰極材料進行表面改質 41
3-3-3 以羥甲基二氧雜戊環酮對陰極材料進行表面改質 41
3-4 材料鑑定分析 43
3-4-1 化學分析電子光譜儀分析 43
3-4-2 穿透式電子顯微鏡分析 43
3-4-3 場發射掃描式電子顯微鏡分析 43
3-4-4 X光繞射儀分析 44
3-4-5 熱重分析儀分析 44
3-4-6 熱示差掃描量熱儀分析 44
3-4-7 核磁共振儀分析 45
3-5 材料電化學特性分析 45
3-5-1 電池性能測試 45
3-5-2 交流阻抗分析儀測試 46
第四章 結果與討論 47
4-1 LiCoO2陰極材料表面修飾有機化合物之鑑定分析與電池性能探討 47
4-1-1 核磁共振儀分析 47
4-1-2 X光繞射儀分析 49
4-1-3 場發射掃描式電子顯微鏡分析 51
4-1-4 穿透式電子顯微鏡分析 52
4-1-5 化學分析電子光譜儀分析 53
4-1-6 熱重分析儀分析 58
4-1-7 慢速循環伏安分析 59
4-1-8 交流阻抗分析儀測試 61
4-1-9 電池性能分析 63
4-1-10 熱示差掃描量熱儀分析 65
4-2 LiCoO2陰極材料表面修飾有機化合物之鈍化膜分析 66
4-2-1 場發射掃描式電子顯微鏡分析 66
4-2-2 化學分析電子光譜儀分析 67
4-2-3 熱重分析儀分析 69
第五章 結論與展望 71
第六章 參考文獻 73
參考文獻 [1] Kang, K.; Meng, Y.S.; Bréger, J.; Grey, C. P.; Ceder, G. Science, 2006, 311, 977-980.
[2] Xu, K. Chem. Rev. 2004, 104, 4303-4417.
[3] Selim, R.; Bro, P. J. Electrochem. Soc. 1974, 121, 1457.
[4] Raul, R. D.; Brummer, S. B. Electrochim. Acta 1977, 22, 75.
[5] Broadhead, J.; Trumbore, F. A. In Power Sources; Collins, D.H., Ed.; Academic Press: London, 1975; Vol. 5, p 661.
[6] Nagaura, T.; Nagamine, M.; Tanabe, I.; Miyamoto, N. Prog. Batteries Sol. Cells 1989, 8, 84.
[7] Nagaura, T.; Ozawa, K. Prog. Batteries Sol. Cells 1990, 9, 209.
[8] Nishi, Y.; Azuma, H.; Omaru, A. U.S. Patent 4,959,281, 1990.
[9] Armand, M.; Tarascon, J. M. Nature 2008, 451, 652-657.
[10] Ravet, N. et al. Electrochemical Society Meeting, Hawaii (1999).
[11] Patil, A.; Patil, V.; Shin, D. W.; Choi, J-W.; Paik, D-S.; Yoon, S-J. Materials Research Bulletin 2008, 43, 1913–1942.
[12] Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. Solid State Ionics, 1986, 18, 794.
[13] Reimers, J. N.; Dahn, J. R.; J. Electrochem. Soc. 1992, 139, 2091–2097.
[14] Ohzuku, T.; Ueda, A.; J. Electrochem. Soc. 1994, 141, 2972–2977.
[15] Konezawa, S.; Okayama, T.; Tsuda, H.; Takashima, M. J. Fluorine Chem. 1998, 87, 141.
[16] Huang, H.; Rao, G.V.; Chowdari, B. J. Power Sources 1999, 81–82, 690.
[17] Ohzuku, T.; Brodd, R. J. Journal of Power Sources 2007, 174, 449-456.
[18] Bruce, P. G.; Lisowska-Oleksiak, A.; Saidi, M. Y.; Vincent, C. A. Solid State Ionics 1992, 57, 353.
[19] Campbell, S. A.; Bows, C.; McMillan, R. S. J. Electroanal. Chem. 1990, 284, 195.
[20] Hirano, H.; Kanno, R.; Kawamato, Y.; Takeda, Y.; Yamaura, K.; Takano, M.; Ohyama, K.; Ohashi, M.; Yamaguchi, Y. Solid State Ionics 1995, 78, 123.
[21] Gummow, R. J.; Liles, D. C.; Thackeray, M. M. Mater. Res. Bull. 1993, 28, 1249.
[22] Das, S. R.; Fachini, I. R.; Majumder, S. B.; Katiyar, R. S. J. Power Sources 2006, 158, 518.
[23] Cras, F. L.; Bloch, D.; Anne, M.; Strobel, P. Solid State Ionics 1996, 89, 203.
[24] Kock, A. D.; Feng, E.; Gummow, R. J. J. Power Sources 1998, 70, 247.
[25] Armstrong, A. R.; Robertson, A. D.; Bruce, P. G. Electrochim. Acta 1999, 45, 285.
[26] Avora, P.; Popov, B. M.; White, R. E. J. Electrochem. Soc. 1998, 145, 807.
[27] Li, G.; Ikuta, H.; Uchida, T.; Wakihara, M. J. Electrochem. Soc. 1996, 143, 178.
[28] Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc. 2001, 148, A224.
[29] Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. Solid State Commun., 2004, 132,181.
[30] Ellis, B.; Subramanya Herle, P.; Rho, Y.-H.; Nazar, L. F.; Dunlap, R.; Perry, Laura K.; Ryan, D. H. Faraday Discussions, 2007, 134, 119–141.
[31] Huang, H.; S. Yin, S. C.; Nazar, L. F. Electrochem. Solid-State Lett., 2001, 4, A170.
[32] Croce, F.; D’Epifanio, A.; Hassoun, J.; Deptula, A.; Olczac, T.; Scrosati, B. Electrochem. Solid-State Lett., 2002, 5, A47.
[33] Chung, S.-Y.; J. Bloking, J. T.; Chiang, Y.-M. Nat. Mater., 2002, 123, 1.
[34] Andersson, A. M.; Abraham, D. P.; Haasch, R.; MacLaren, S.; Liu, J.; Amine, K. Journal of The Electrochemical Society 2002, 149, A1358-A1369.
[35] Chen, C. H.; Liu, J.; Amine, K. J. Power Sources, 2001, 96, 321.
[36] Komaba, S.; Watanabe, M.; Groult, H.; Kumagai, N. Carbon 2008, 46, 1184 –1193.
[37] Diebold, U. Surface Science Reports, 2003, 48, 53-229.
[38] Yang, Z.; Yang, W.; Evans, D. G.; Li, G.; Zhao, Y. Electrochemistry Communications 2008, 10, 1136–1139.
[39] Jang, Y. I.; Dudney, N. J.; Blom, D. A.; Allard, L. F. J. Electrochem. Soc. 2002, 149, A1442.
[40] Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Solid State Ionics 1996, 83, 167.
[41] Chen, Z.; Dahn, J. R. Electrochimica Acta 2004, 49, 1079–1090.
[42] Lee, H.; Kim, M. G.; Cho, J. Electrochemistry Communications, 2007, 9, 149–154.
[43] Jang, Y. I.; Dudney, N. J.; Blom, D. A.; Allard, L. F. J. Electrochem. Soc. 2002, 149, A1442.
[44] Fu, L. J.; Liu, H.; Li, C.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q.Solid State Sciences 2006, 8, 113–128.
[45] Wang, Z.; Wu, C.; Liu, L.; Wu, F.; Chen, L.; Huang, X. J. Electrochem. Soc. 2002, 149, A466.
[46] Kosova, N.; Devyatkina, E.; Slobodyuk, A.; Kaichev, V. Solid State Ionics 2008, 179, 1745–1749.
[47] Madhavi, S.; Rao, G.V.S.; Chowdari, B.V.R.; Li, S.F.Y. J. Electrochem. Soc. 2001, 148, A1279–A1286.
[48] Bai, Y.; Shi, H.; Wang, Z.; Chen, L. J. Power Sources 2007, 167, 504–509.
[49] Cho, J.; Kim, Y. J.; Park, B. Chem. Mater. 2000, 12, 3788-3791.
[50] Fey, G. T. -K.; Lu, C. -Z.; Kumar, T. P.; Muralidharan, P.; Chiang, A. S. T. Journal of Physics and Chemistry of Solids 2006, 67, 2337–2344.
[51] Kosova, N.; Devyatkina, E.; Slobodyuk, A.; Kaichev, V. Solid State Ionics 2008, 179, 1745–1749.
[52] Gaudin, E.; Taulelle, F.; Stoyanova, R.; Zhecheva, E.; Alcatara, R.; Lavela, R.; Tirado, J. R. J. Phys. Chem. B 2001, 105, 8081.
[53] Wang, Z.; Wu, C.; Liu, L.; Wu, F.; Chen, L.; Huang, X. Journal of The Electrochemical Society, 2002, 149, A466-A471
[54] Tukamoto, H.; West, A. R. J. Electrochem. Soc. 1997, 144, 3164.
[55] Zhao, H.; Gao, L.; Qiu, W.; Zhang, X. Journal of Power Sources 2004, 132, 195–200.
[56] Wang, Y.; Zhang, M.; Zhong, Q.; Reimers, J. N.; Sacken, U. V. Proceedings of the Electrochemical Society Fall meeting, Honolulu,Hawaii, 1999 #371.
[57] Fey, G. T. K.; Lu, C. Z.; Kumar, T. P.; Chang, Y. C. Surface & Coatings Technology 2005, 199, 22 – 31.
[58] Endo, E.; Yasuda, T.; Kita, A.; Yamaura, K.; Sekai, K. Journal of The Electrochemical Society, 2000, 147, 1291-1294.
[59] Cho, J. Solid State Ionics 2003, 160, 241– 245.
[60] Wang, H.; Zhang, W.-D.; Zhu, L.-Y.; Chen, M.-C. Solid State Ionics 2007, 178, 131–136.
[61] Lee, H.; Kim, M. G.; Cho, J. Electrochemistry Communications 2007, 9, 149–154.
[62] Lee, S-Y.; Kim, S. K. Ahn, S. Electrochemistry Communications 2008, 10, 113–117.
[63] Aurbach, D.; Markovsky, B.; Rodkin, A.; Levi, E.; Cohen, Y. S.; Palchik, O.; Kim, H.-J.; Schmidt, M. Electrochim. Acta 2002, 47, 4291.
[64] Chen, Z. H.; Dahn, J. R. Electrochem. Solid-State Lett. 2004, 7, A11.
[65] Chung, K. Y.; Yoon, W.-S.; McBreen, J.; Yang, X.-Q.; Oh, S. H.; Shin, H. C.; Cho, W. I.; Cho, B. W. Journal of The Electrochemical Society, 2006, 153, A2152-A2157.
[66] Bai, Y.; Yin, Y. F.; Liu, N.; Guo, B. K.; Shi, H. G.; Liu, J. Y.; Wang, Z. X.; Chen, L. Q. Journal of Power Sources 2007, 174, 328–334.
[67] Liu, J. Y.; Liu, N.; Liu, D. T.; Bai, Y.; Shi, L. H.; Wang, Z. X.; Chen, L. Q.; Hennige, V.; Schuch, A. Journal of The Electrochemical Society, 2007, 154, A55-A63.
[68] Bond, G. C. Heterogeneous Catalysis Principles and Applications, 2nd ed.; Oxford Science: New York,1993.
[69] Rokicki, G.; Rakoczy, P.; Parzuchowski, P.; Sobiecki, M. Green Chem. 2005, 7, 529–539.
[70] Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H.; Honma, I.; J. AM. CHEM. SOC., 2007, 129, 7444-7452.
[71] Takahashi, Y.; Kijima, N.; Dokko, K.; Nishizawa, M.; Uchida, I.; Akimoto, J. Journal of Solid State Chemistry, 2007, 180, 313–321.
[72] ThermoFisher SCIENTIFIC. http://www.lasurface.com/database/index.php (accessed April 25, 2009)
[73] Appapillai, A. T.; Mansour, A. N.; Cho, J.; Yang, S.-H. Chem. Mater. 2007, 19, 5748-5757.
[74] R. Dedryvére, R.; Martinez, H.; Leroy, S.; Lemordant, D.; Bonhomme, F.; Biensan, P.; Gonbeau, D. Journal of Power Sources 2007, 174, 462–468.
[75] Matsui, M.; Dokko, K.; Kanamura, K. Journal of Power Sources 2008, 177, 184–193.
[76] Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P. Journal of Power Sources 2006, 155, 401–414.
[77] Baba, Y.; Okada, S.; Yamaki, J.-I. Solid State Ionics 2002, 148, 311.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明