以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:83 、訪客IP:3.145.57.187
姓名 莊翼鴻(Yi-hong Zhuang) 查詢紙本館藏 畢業系所 化學學系 論文名稱 ITO電極表面修飾方法對於有機發光二極體元件 效能及壽命影響研究
(The effect of surface modification of ITO electrode on device characteristics and lifetime of organic light-emitting diodes)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 有機發光二極體中,陽極與其上的有機材料層介面間,由於存在了能階障礙 (Schottky energy barrier,φe),影響了電荷的注入,以及有機發光二極體元件效率及壽命。藉由具有不同偶極矩大小及方向的有機分子薄膜來修飾電極表面,可調控電極的功函數。降低電極與有機材料層間的能障,從而有助於載子的注入,進而提高有機發光二極體元件效率。
本篇論文是以不同偶極矩大小的有機亞磷酸分子(PyOPA、CF3SO2BnPA、CF3BnPA和CF3C3PA)以不同吸附方式(氣相與液相)來製備自組裝單分子薄膜修飾於ITO電極表面上及後續元件製程。由之前的文獻中[1],分子偶極矩的大小及方向對於ITO電極功函數的增減有重要的影響。一般使用氧電漿處理過後的ITO表面上功函數約為5.8電子伏特,而當所用自組裝單分子薄膜的尾端為一拉電子基團時,偶極矩的方向為指離ITO表面,能提升ITO電極的功函數;推電子基團則相反。
然而,由我的實驗中,分子偶極矩的增加並非完全能表現在功函數的增加,因為分子吸附在ITO表面上時,分子是否緊密堆疊,垂直站立在ITO電極上有重要的影響,由反射式紅外線光譜儀測量,當所使用分子吸附於ITO上時,會偏離ITO表面的法線方向,使得有效偶極矩減少,功函數無法如期增加,造成有機發光二極體元件效率無顯著提高。
在汽相吸附的實驗中,由XPS光譜圖中發現,在同樣吸附時間下,測到的P 2p和F 1s對In 3d3/2的強度都比在溶液中浸泡吸附來的大,顯示可能不只單層存在。多層的存在。使得載子不易穿隧到有機層中,造成元件電流密度和發光強度較低。而以乙醇震洗過後的結果亦同。然而由光學顯微鏡中看到,當吸附完後未經乙醇震洗的基板所製成元件,其上殘留較多黑點;當使用乙醇震洗和科技泡棉輕刷表面後,黑點數目下降許多,雖然震洗完後,無法完全把表面多餘的有機分子帶走,但在元件發光表面上,可以除去不少汙染物,因此我們認為當今天以氣相修飾過後的基板,可能還是要以溶劑來去除其表面上的汙點,使其不會影響到元件的品質。
摘要(英) In organic light emitting diode, there exists an energy barrier(Schottky energy barrier,φe) between the anode and the organic layer, affecting the charge injection and thus the efficiency and lifetime. By using organic molecules having different size and orientation of the dipole moment to modify the anode surface, one can regulate the interfacial barrier between the electrode and the semiconductor, favoring charge carrier injection and increase efficiency in OLED device.
In this study, organic phosphonic acid molecules(PyOPA, CF3SO2BnPA, CF3BnPA and CF3C3PA) with different sizes of dipole moment were used to prepare self-assembled monolayers on the ITO surface by different methods(vapor phase and solution phase) for subsequent device fabrication. According to previous literatures, the magnitude and direction of the molecular dipole moment of the modifying molecule has an important influence on the work function of ITO electrode. In general, ITO surface treated by oxygen plasma has a work function near 5.8 eV .For ITO modified with a SAM carrying an electron-withdrawing end group(ex trifluoromethyl), the direction of the dipole moment is pointing away from the ITO surface, the work function of the ITO electrode will be increased. The reverse is true for electron-donating group.
However, it was found from my experiment that, further increasing the dipole moment in the molecule does not necessarily increase the work function proportionally. The packing and orientation of the molecules adsorbed on the ITO surface, plays an important role in modulating the work function. By the reflection absorption infrared spectroscopy measurement, it is suggested that the strongly polar molecule adsorbed on the ITO may orient away, from the ITO surface normals, leading to a smaller effective dipole along the surface normal and the work function did not increase as expected so that the device efficiency did not increase as expected.
In gas adsorption experiments, the XPS spectrum suggest that after the same adsorption time, the P 2p and F 1s intensity versus of In 3d3 / 2 is stronger than that for the sample prepared by immersion in the solution, suggesting more than monolayer was obtained. For devices, lower current density and luminance were obtained ,similar result were obtained after sonication of the substrate by ethanol. However, by optical microscope, it was observed that for sample without sonication of the substrate after gas phase adsorption, there are many dark spots in the device. After rinsing the substrate with ethanol and rub gently the surface of substrates by a foam pad, the number of dark spots decreased. Although sonication in ethanol did not completely remove the excessive organic molecules remaining on surface of substrate, quality of the pixel improved. So, it is suggested that solvent rinse is necessary after gas phase adsorption in order to maintain the quality of the device.
關鍵字(中) ★ 界面修飾
★ 自組裝單分子薄膜
★ 有機發光二極體關鍵字(英) 論文目次 摘要................................................................................................................................. I
Abstract ......................................................................................................................... II
目錄.............................................................................................................................. IV
圖目錄....................................................................................................................... VIII
表目錄........................................................................................................................ XII
附圖目錄................................................................................................................... XIII
第一章緒論 ................................................................................................................... 1
1-1 自組裝單分子薄膜 ................................................................................................. 1
1-1-1 自組裝單分子薄膜介紹 .................................................................................. 1
1-1-2 自組裝單分子薄膜製備 .................................................................................. 2
1-1-3 自組裝單分子薄膜種類 ................................................................................. 3
1-1-3.1 脂肪酸(Fatty acid)單分子膜 .................................................................. 3
1-1-3.2 烷基矽烷自組裝單分子薄膜 ................................................................. 5
1-1-3.3 烷基硫醇自組裝單分子薄膜 ................................................................. 6
1-1-3.4 亞磷酸自組裝單分子薄膜 ..................................................................... 8
1-2 有機發光二極體元件 ............................................................................................ 9
1-2-1 導論 ................................................................................................................. 9
1-2-2 有機發光二極體的原理 ............................................................................... 10
1-2-3 有機發光二極體元件結構 ........................................................................... 12
1-2-4 電極與有機半導體材料界面關係 ............................................................... 16
1-2-5 元件衰退機制 ............................................................................................... 19
第二章研究動機 ......................................................................................................... 22
第三章實驗部份 ......................................................................................................... 23
3-1 實驗用藥品 ........................................................................................................... 23
3-1-1 有機發光二極體元件電極材料 ................................................................... 23
3-1-2 ITO 基板蝕刻與清洗 ................................................................................. 23 V
3-1-3 有機自組裝薄膜合成藥品 ........................................................................... 23
3-1-4 有機薄膜製備藥品 ....................................................................................... 24
3-1-5 有機發光二極體元件製備材料 ................................................................... 24
3-2 合成的探討 ........................................................................................................... 24
3-2-1 化合物 PyOPA 的合成 ................................................................................. 24
3-2-1-1 4-(Bromomethyl)pyridine,hydrobromide ........................................ 25
3-2-1-2 Diethyl 4(pyridylmethyl)phosphonoate ........................................... 25
3-2-1-3 Diethyl 4(pyridylmethyl)phosphonoate N-oxide ............................. 25
3-2-1-4 4(Pyridylmethyl)phosphononic acid N-oxide .................................. 26
3-2-2 化合物 CF3SO2BnPA 的合成 ...................................................................... 26
3-2-2-1 Diethyl 4[(trifluoromethyl)thio]benzylphosphonote .......................... 26
3-2-2-2 Diethyl 4[(trifluoromethyl)sulfonyl]benzylphosphonote ................... 27
3-2-2-3 [(4-Trifluoromethyl)sulfonyl]benzylphosphonic acid ........................ 27
3-3 實驗用儀器 ........................................................................................................... 28
3-3-1 氧電漿表面改質處理 ................................................................................... 28
3-3-2 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer,FTIR)
.................................................................................................................................. 28
3-3-3 光電子光譜儀(Photoelectron spectrometer surface analyze model,AC-2)29
3-3-4 核磁共振儀(Nuclear Magnetic Resonance, NMR ....................................... 31
3-3-5 X 光光電子能譜儀(X-ray Photoelectron Spectroscopy,XPS) .............. 31
3-3-6 原子力顯微鏡(Atomic Force Microscopy) ............................................. 32
3-3-7 接觸角測量(Water Contact Angle Measurement) .................................. 33
3-3-8 真空熱蒸鍍系統(Vaccum Deposition System) .......................................... 34
3-3-9 電性量測系統(分光式色度計與電源供應器) .......................................... 34
3-3-10 光學顯微鏡(Optical Microscope) ............................................................. 35 VI
3-3-11 OLED壽命週期測試系統 ........................................................................... 35
3-4 有機薄膜製備 ...................................................................................................... 35
3-4-1 ITO基板表面蝕刻 ......................................................................................... 35
3-4-2 ITO基板表面清洗與活化 ............................................................................. 37
3-4-3 亞磷酸自組裝單分子薄膜製備 ................................................................... 37
3-5 有機發光二極體元件製備 .................................................................................. 37
第四章結果與討論 ..................................................................................................... 38
4-1 液相中 PyOPA 與 CF3BnPA 自組裝薄膜吸附製備 ......................................... 39
4-1-1 反射式紅外線光譜儀分析 ............................................................................ 39
4-1-2 表面功函數分析 ............................................................................................ 42
4-1-3 接觸角分析 .................................................................................................... 43
4-1-4 元件電性分析 ............................................................................................... 43
4-2 液相中 CF3SO2BnPA 與 CF3BnPA 自組裝薄膜吸附製備 .............................. 48
4-2-1 反射式紅外線光譜儀分析 ............................................................................ 49
4-2-2 表面功函數分析 ............................................................................................ 52
4-2-3 接觸角分析 .................................................................................................... 53
4-2-4 X 光光電子光譜分析 .................................................................................... 53
4-2-5 元件電性分析 ............................................................................................... 55
4-2-6 光學顯微鏡下觀察像素點之結果 ............................................................... 57
4-2-7 元件壽命分析 ............................................................................................... 58
4-3 氣相中自組裝薄膜吸附時間 .............................................................................. 60
4-3-1 反射式紅外線光譜儀分析 ............................................................................ 60
4-3-2 表面功函數分析 ............................................................................................ 61
4-3-3 接觸角分析 .................................................................................................... 62
4-3-4 X 光光電子光譜分析 .................................................................................... 63 VII
4-3-5 元件電性分析 ............................................................................................... 64
4-3-6 光學顯微鏡下觀察像素點之結果 ............................................................... 66
4-4. 汽相吸附後以乙醇震洗前後的差別 ................................................................. 67
4-4-1 反射式紅外線光譜儀分析 ............................................................................ 68
4-4-2 表面功函數分析 ........................................................................................... 70
4-4-3 元件電性分析 ............................................................................................... 70
4-4-4 光學顯微鏡下觀察像素點之結果 ................................................................ 72
4-4-5 元件壽命分析 ............................................................................................... 73
4-4-6 原子力顯微鏡下觀察之結果 ....................................................................... 75
第五章結論 ................................................................................................................. 79
參考文獻...................................................................................................................... 81
附圖.............................................................................................................................. 86參考文獻 1. Sharma , A.; Kippelen, B.; Hotchkiss, P.J.; Marder, S.R. Appl.Phys.Lett. 2008, 163308.
2. 陳金鑫、黃孝文 OLED有機電激發光材料與元件,五南出版社,2005.
3. Bigelow,W. C.; Pickett, D. L.; Zisman, W. A. Collid Interface Sci. 1946, 1, 513.
4. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
5. Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92.
6. Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216.
7. Delamarche, E.; Michel, B.; Kang, H.; Gerber, C. Langmuir 1994, 10, 4103.
8. Fenter, P.; Eisenberger, P.; Li, Jun ; Camillone, N.; Bernasek, S.; Scoles, G.; Ramanarayanan, T. A.; Liang, K. S. Langmuir 1991, 7, 2013.
9. Dhirani, A.; Hines, M. A.; Fisher, A. J.; Ismail, O.; Guyot-Sionnest, P. Langmuir 1995, 11, 2609.
10. Keller, H.; Sirnak, P.; Schrepp, W.; Dembowski, J. Thin Solid Films 1994, 244, 799.
11. Itoh, M.; Nishihara, K.; Aramaki, K. J. Electrochem. Soc. 1995, 117, 12528.
12. Schonherr, H.; Ringsdorf, H. Langmuir 1996, 12, 3891.
13. Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1825.
14. Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure & Appl. Chem. 1991, 63, 821.
15. Folkers, J. P.; Gorman, C. B.; Laibinis, P. E.; Buchholz, S.; Whitesides, G. M.; Nuzzo, R. G. Langmuir 1995, 11, 813.
16. Allara, D. L.; Nuzzo, R.G. Langmuir 1985, 1, 54.
17. Laibinis, P. E.; Hickinan, J. J.; Wrighton, M. S.; Whitesides, G. M. Science 1989, 245, 845.
18. Tao, Y. T.; Lee, M. T.; Chang, S. C. J. Am. Chem. Soc. 1993, 115, 9547.
19. Ulman, A., An Introduction to Ultrathin Organic Films:From Langmuir-Blodgett to Self-assembly. ed.; Academic Press: Boston, 1991.
20. Sellers H., Ulman A., Shnidman Y. and Eilers J. E. J. Am. Chem. Soc. 1993, 115, 9389.
21. David L. A. Biosensors and Bioelectronics 1995, 10, 771.
22. Dubois, L. H.; Zegarski, B. R.; Nuzzo, R. G. J. Am. Chem. Soc. 1990, 112, 570.
23. Allara, D. L.; Nuzzo, R.G. Langmuir 1985, 1, 45.
24. Ogawa, H.; Chihera, T.; Taya, K. J. Am. Chem. Soc. 1985, 107,1365.
25. Schlotter, N. E.; Porter, M. D.; Bright, T. B.; Allara, D. L. Chem. Phys. Lett. 1986, 132, 93.
26. Samart, M. G.; Brown, C.A.; Gordon, J. G. Langmuir 1993, 9, 1082.
27. Tao, Y. T.; Lee, M. T.; Chang, S. C. J. Am. Chem. Soc. 1993, 115,
4350.
28. Ulman, A. Chem. Rev. 1996, 96, 1533.
29. Du, Q.; Freysz, E.; Shen, Y. R. Science 1994, 264, 826.
30. Bain, C. D. J. Chem. Soc. Faraday Trans. 1995, 91, 1281.
31. Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M. Langmuir 1992, 8,1330.
32. Widrig, C. A.;Alves,C.A.;Porter,M.D. J. Am. Chem. Soc.1991, 113, 2805.
33. Hanson, E. L.; Schwartz, J.; Nickel, B.; Koch, N.; Danisman, M. F.
J. Am. Chem. Soc. 2003, 125, 16074.
34. Koh, S. E.; McDonald, K. D.; Holt, D. H.; Dulcey, C. S. Langmuir 2006, 22, 6249.
35. Sharma, A.; Kippelen, B.; Hotchkiss, P. J.; Marder, S. R. Appl. Phys. Lett. 2008, 93, 163308.
36. Paramonov, P. B.; Paniagua, S. A.; Hotchkiss, P. J.; Jones, S. C.; Armstrong, N. R.; Marder, S. R.; Bredas, J.-L. Chem. Mater. 2008, 20, 5131.
37. Luschtinetz, R.; Oliveira, A. F.; Frenzel, J.; Joswig, J. O.; Seifert, G.; Duarte. H. A. Surface Science 2008, 602, 1347.
38. Rao, J.; Yan, L.; Xu, B.; Whitesides, G. M. J. Am. Chem. Soc. 1999, 121, 2629.
39. Willner, I.; Heleg-Shabtai, V. ; Blonder, R. ; Katz, E.; Tao, G. J. Am. Chem. Soc. 1996, 118, 10321.
40. Lee, B.; Park, S. J.; Mirkin, C. A.; Smith, J. C. ; Mrksich, M. Science 2002, 295, 1702.
41. Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550.
42. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
43. Helfrich, W.; Schneider, W. G. Phys. Rev. Lett. 1965, 14, 229.
44. Williams, D. F.; Schadt, M. Proc. IEEE 1970, 58, 476.
45. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
46. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackey, K.; Friend, R. H.; Burns, P. L. ; Holmes, A. B. Nature 1990, 347, 539.
47. Baldo, M. A.; O′Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
48. Burlin, A. L.; Ratner, M. A. J. Phys. Chem. A 2000, 104, 4704.
49. Matsumura, M.; Akai, T.; Saito, M. Jap. J. Appl. Phys.1996, 35, 3468.
50. Troadec, D.; Veriot, G.; Antony, R.; Moliton, A. Syn. Met. 2001, 124, 49.
51. Ammermann, D.; Bohler, A.; Schobel, J.; Kowalsky, W. Annual report, Institut fur Hochfrequenztechnik, TU Braunschweig 1996, 9.
52. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jap. J. Appl. Phys. Part 2 1988, 27, L269.
53. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jap. J. Appl. Phys. Part 2 1988, 27, L713.
54. Zhou, X.; Pfeiffer, M.; Huang, J. S.; Blochwitz-Nimoth, J.; Qin, D. S. Appl. Phys. Lett. 2002, 81, 922.
55. Hung, L. S.; Madathil, J. Thin Solid Films 2002, 410, 101.
56. Chen, C. W.; Hsieh, P. Y.; Chiang, H. H.; Lin, C. L.; Wu, H. M. Appl. Phys. Lett. 2003, 83, 5127.
57. Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P. Phys. Rev. B 1996, 54, 14321.
58. Crispin, X.; Geskin, V.; Crispin, A.; Cornil, J.; Lazzaroni, R.; Salaneck, W. R.; Bredas, J. L. J. Am. Chem. Soc. 2002, 124, 8131.
59. Hotchkiss, P. J.; Jones, S. C.; Paniagua, S. A.; Sharma, A.; Kippelen, B.; Armstrong, N. R.; Marder. S. R. Acc. Chem. Res. 2012, 45, 337.
60. Wu, C. C.; Wu, C. I.; Sturn, J. C.; Kahn, A. Appl. Phys. Lett. 1997, 70, 1348.
61. S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, Kwong, C.F. Appl. Phys. A. 1999, 68, 447.
62. de Jong, M.P.; van IJzendoorn, L. J.; de Voigt,M. J. A. Appl. Phys. Lett. 2000, 77, 2255.
63. Wang, M.; Hill, I.G. Org. Electron. 2012, 13, 498.
64. Cho, C. P.; Tao, Y. T. Langmuir 2007, 23, 7090.
65. Hung, M. C.; Wu, K. Y.; Huang, H. W. ; Tao, Y. T. Appl. Phys. Lett. 2006, 89, 203106.
66. Wu, K. Y.; Yu, S. Y. ; Tao, Y. T. Langmuir 2009, 25, 6232.
67. Yu, S. Y.; Huang, D. C.; Chen, Y. L.; Wu, K. Y.; Tao, Y. T. Langmuir 2012, 28, 424.
68. Adachi, C.; Nagai, K.; Tamoto, N. Appl. Phys. Lett. 1995, 66, 2679.
69. McElvain, J.; Antoniadis, H.; Hueschen, M. R.; Miller, J. N.; Roitman, D. M.; Sheats, J. R.; Moon, R. L. J. Appl. Phys. 1996, 80, 6002.
70. Smith, P. F.; Gerroir, P.; Xie, S.; Hor, A. M.; Popovic, Z.; Hair, M. L. Langmuir 1998, 14, 5946.
71. Kugler, T.; Johansson, A.; Dalsegg, I.; Gelius, U.; Salaneck, W. R. Synth. Met. 1997, 91, 143.
72. Mamada, Y.; Sano, T.; Shibata, K.; Kuroki, K. Japan J. Appl. Phys. part 2. 1995, 34, L824.
73. Burrows, P. E.; Bulovic, V., Forrest, S. R.; Sapochak, S.; Mccarty, D. M.; Thompson, M. E. Appl. Phys. Lett. 1994, 65, 2922.
74. Lee, S. T.; Gao, Z. Q.; Hung, L. S. Appl. Phys. Lett. 1999, 75, 1404
75. Paniagua, S. A.; Hotchkiss, P. J.; Jones, S. C.; Marder, S. R.; Mudalige, A.; Marrikar, F. S.; Pemberton, J. E.; Armstrong, N. R. J. Phys. Chem. C 2008, 112, 7809.
76. Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1999, 93, 107
77. Herstedt, M.; Smirnov, M.; Johansson, P.; Chami, M.; Grondin, J.; Servant, L.; Lassègues, J. C. J. Raman Spectrosc. 2005, 36, 762
78. Wiley, R. H.; Slaymaker, S. C. J. Am. Chem. Soc. 1957, 79, 2233
79. Kumar, M.; Srivastava, M.; Yadav, R. A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013, 111, 242
80. Varsanyi, G. Vibrational Spectra of Benzene Derivatives 1921.
81. Lin, W. L.; Tao, Y. T.; Hietpas , G. D.; Allara, D. L. J. Phys. Chem. B 1997, 101, 9732.
82. Schulmeyer, T.; Paniagua, S. A.; Veneman, P. A.; Jones, S. C.; Hotchkiss, P. J.; Mudalige, A.; Pemberton, J. E.; Marder S. R.; Armstrong, N. R. J. Mater. Chem. 2007, 17, 4563.
83. Paramonov, P. B.; Paniagua, S. A.; Hotchkiss, P. J.; Jones, S. C.; Armstrong, N. R.; Marder, S. R.; Bre ́das, J. L. Chem. Mater. 2008, 20, 5131.
指導教授 陶雨台、陳銘洲 審核日期 2014-7-30 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare