博碩士論文 101223018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.144.4.81
姓名 段振斌(Chen-pin Tuan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 1-Butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide與二氧化鈦奈米管改質之非揮發鋰電池電解液之研究
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們成功的達成以非揮發性、具阻燃性、高電化學及高熱穩定性的電解質應用於高能高電容量之鋰離子二次電池。室溫離子液體被用於鋰離子電池是由於其獨特的性質,如:低蒸氣壓、在高極性溶劑有高溶解度等,最重要的是因其有高電位窗及高熱穩定性。然而,它的高黏滯性以及相對較低的導電度阻礙了整體鋰電池的效能。另一發展二十年以上的方法,即是使用高分子電解質來增加鹽類的解離及離子的傳遞運動;然而,高分子本身的特性─自由空間過小、高鏈段黏滯性及低介電常數,因而阻礙了這個離子傳導機制。
我們的研究揭示了一個增加高分子電解質導電度的可能性:使用二氧化鈦奈米管來提升鹽類的解離度,並且提供離子傳遞通道,在沒有使用任何揮發性電解質的情形下,使其離子導電度提升,並且接近10-3 S/cm。在目前的實驗中,我們發展出一新穎的電解質系統,利用離子液體與高介電常數的聚偏二氟乙烯-共-六氟丙烯,並且加入微量二氧化鈦奈米管來製備無機物複合離子液體高分子電解質。
在此系統中,離子液體與鋰鹽完全解離,並且藉由二氧化鈦奈米管的加入增加其運動性。因此,鋰離子導電度在室溫(25℃)下可達到 S/cm,並且在80℃下達到 S/cm。此高離子導電度的高分子電解質系統適用於高電壓的範圍,並且具有高電、熱穩定性,適用於高電壓正極材料的高能鋰電池、鋰/硫電池、鋰/空氣電池,或其他使用高電容負極材料鋰電池。由於沒有固態電解質介面形成,因此高循環壽命是可以被預期的一項結果。且因為電解質無揮發性,因此其安全性可以獲得相對的保證。製成薄膜的特性即暗示著此高分子電解質可應用於可撓式電池。
本實驗之高分子電解質離子導電度隨溫度而增加,市售電解液的導電度隨著溫度的上升並無太大增加,維持在大約10-3 S/cm,表示離子傳導時具有低活化能。高分子電解質中的二氧化鈦含量影響離子導電度;二氧化鈦奈米管增加至5重量百分比(相對於溶劑之重量百分比),離子導電度隨之上升,但隨著含量增加至7-9重量百分比而迅速下降。此最佳比例改進離子導電度是因為二氧化鈦奈米管幫助鹽類解離,使鋰離子在傳遞過程中更容易移動,並提供了更多的離子傳輸通道;而導電度的迅速衰退是因為二氧化鈦奈米管在過多的情形下產生自聚。在離子液體的情形中,我們可以藉由阿瑞尼士圖中發現斜率的迅速下滑,同時也暗示著我們,相較於揮發性電解液,離子液體的傳輸展現較高的活化能。
而在使用不同組成的離子液體/高分子複合電解質系統的電池效能,展現的電容量接近於使用揮發性電解液(155 mAh/g),而介面電阻也隨著離子液體組成增加而減少;在10P20B的例子中,我們以0.05C的速率下充放電可達到147 mAh/g的電容量。然而,此薄膜由於離子液體的量過多而導致太軟因而失去其強度。
摘要(英) The success in reaching the goals of high power high capacity lithium battery requires the use of electrolytes with sufficiently high ion conductivity that are nonvolatile, retardant to flame, highly electrochemical and highly thermally stable. Room temperature ionic liquid (RTIL) has been explored for this purpose due to its unique properties such as: low vapor pressure, high solubility in polar solvent, and most importantly, high electrochemical and thermal stable window.
However, it’s high viscosity, and relatively low ion conductivity has hampered the full cell performance. Another approach widely explored over the past 20 year is the polymer electrolytes where enhancing salt dissociation and ion hopping motion are common goals that have been hampered largely by polymer inherent properties such as smaller free volume, higher chain viscosity, and low dielectric constant.
Our previous works disclosed a composite polymer electrolyte using TiO2 nanotube to induce higher salt dissociation, and to provide a direct ion conducting pathway which shows ion conductivity approaching the order of 10-3 S/cm without the use of any volatile electrolyte.
In present paper, we disclosed novel electrolyte systems which composed of ionic liquids and a high dielectric polymer PVdF with the addition of small amount of TiO2 nanotube. In this system, the ionic liquids and the lithium salt are completely dissociated and the mobility is raised in presence of TiO2 nanotube. As results, the lithium ion conductivity reached a value of S/cm (25C) and S/cm at 80C. This high ion conducting polymer electrolyte system is tolerating to high voltage, is highly thermally stable and chemical stable. Suitable applications can be found in high energy lithium battery using high voltage cathode, in Li/S, Li/Air or other systems using high capacity anode. Since there is no SEI formation, longer life cycle is expected. As the electrolyte is nonvolatile, higher safety can be guaranteed. Film forming property implies this electrolyte is suitable to be applied to thin film (flexible) battery.
Here is the result that increases of ion conductivity with increasing temperature. Commercial electrolyte displayed a value in the order of 10-3 S/cm throughout the temperature measured, with a less temperature dependant property, reflecting lower activation energy in ion transport. In the IL/PVdF composite system, samples 10P10B and 10P20B representing 10 part (by weight) and 20 part of ionic liquids in 10 part of PVdF, which displayed higher ion conductivity than that of commercial liquid electrolyte throughout all temperature range measured.
Furthermore, the addition of TiO2 has impacted ion conductivity. With initial increase of TiO2 nanotube to 5wt% (wt% relative to the amount of solvent), conductivity is raised, but it dropped quickly with further addition to 7% or 9 wt%. The improvement in ion conductivity at some optimized TiNT is related to the fact that it assisted in dissociating the salt which allows for more movable ion, and provided a more directed ion conducting channel. And the deteriorated performance at high TiNT content is possibly due to aggregation of inorganic moiety. In these cases with ionic liquids, a steeper slope in the arrheneous plot is found, indicating the ion transport is experiencing higher activation energy process compared to that in the volatile liquid electrolytes.
Moreover, we displayed the battery performance using the IL/PVdF composite electrolytes with different IL composition. The capacity is close to that using volatile electrolyte (155mAh/g), and is found to increase continuously, and the interface resistance decrease with increasing of IL content. A capacity value of 147 mAh/g can be realized at 0.05C rate in sample 10P20B. However, the membrane becomes soft and lost it free-standing property when IL exceeds this composition.
關鍵字(中) ★ 鋰電池
★ 高分子電解質
★ 離子液體
關鍵字(英)
論文目次 摘要 ................................ ................................ ................................ ................................ . i
Abstract ................................ ................................ ................................ .......................... iii
謝誌 ................................ ................................ ................................ ................................ . v
目錄 ................................ ................................ ................................ ............................... vi
圖目錄 ................................ ................................ ................................ ........................... ix
表目錄 ................................ ................................ ................................ ........................... xi
第一章 緒論 ................................ ................................ ................................ ........... 1
1-1 前言 ................................ ................................ ................................ ........... 1
1-2 鋰電池與二次簡介 鋰電池與二次簡介 鋰電池與二次簡介 鋰電池與二次簡介 ................................ ................................ ....... 1
1-3 高分子電解質簡介 高分子電解質簡介 高分子電解質簡介 ................................ ................................ ................... 3
1-3-1 固態高分子電解質 固態高分子電解質 固態高分子電解質 ................................ ................................ ............ 4
1-3-2 膠態高分子電解質 膠態高分子電解質 膠態高分子電解質 ................................ ................................ ............ 4
1-3-3 微孔型高分子電解質 微孔型高分子電解質 微孔型高分子電解質 ................................ ................................ ........ 6
1-4 離子液體的簡介及物化性質 離子液體的簡介及物化性質 離子液體的簡介及物化性質 離子液體的簡介及物化性質 ................................ ................................ ... 7
1-4-1 離子液體的溫度範圍 離子液體的溫度範圍 離子液體的溫度範圍 ................................ ................................ ........ 7
1-4-2 熔點 ................................ ................................ ................................ .... 8
1-4-3 影響熔點的因素 影響熔點的因素 ................................ ................................ ................ 8 離子大小對熔點的影響 離子大小對熔點的影響 離子大小對熔點的影響 離子大小對熔點的影響 ................................ ................................ .... 8
1-4-4 Imidazolium Imidazolium Imidazolium Imidazolium 陽離子 陽離子 ................................ ................................ ....... 10
1-4-5 Imidazolium ImidazoliumImidazolium Imidazolium烷基取代的長度 烷基取代的長度 烷基取代的長度 ................................ .................... 10
1-4-6 離子液體的極性 離子液體的極性 ................................ ................................ .............. 10
1-4-7 玻璃轉化溫度 玻璃轉化溫度 ................................ ................................ .................. 11
1-4-8 氫鍵 ................................ ................................ ................................ .. 11
1-5 二氧化鈦簡介 二氧化鈦簡介 ................................ ................................ ......................... 13
1-5-1 TiOTiO 2的結構性質 的結構性質 ................................ ................................ ............. 13
1-5-2 無機氧化物高分子電解質之簡介 無機氧化物高分子電解質之簡介 無機氧化物高分子電解質之簡介 無機氧化物高分子電解質之簡介 無機氧化物高分子電解質之簡介 ................................ ................. 14
1-6 研究動機與目的 研究動機與目的 ................................ ................................ ..................... 14
第二章 文獻回顧 ................................ ................................ ................................ . 16
2-1 高分子電解質之發展 高分子電解質之發展 高分子電解質之發展 ................................ ................................ ............. 16
2-2 奈米複合 (nano(nano -composite) composite) composite) 高分子電解質發展 高分子電解質發展 高分子電解質發展 高分子電解質發展 ................................ ..... 18
2-3 二氧化鈦之發展與製備 二氧化鈦之發展與製備 二氧化鈦之發展與製備 二氧化鈦之發展與製備 ................................ ................................ ......... 19
2-3-1 二氧化鈦之發展 二氧化鈦之發展 ................................ ................................ .............. 19
2-3-2 二氧化鈦奈米管之製備 二氧化鈦奈米管之製備 二氧化鈦奈米管之製備 二氧化鈦奈米管之製備 ................................ ................................ .. 21
2-4 PVdF -HFP HFP特性 ................................ ................................ ...................... 24
2-5 離子液體在鋰電池的發展 離子液體在鋰電池的發展 離子液體在鋰電池的發展 離子液體在鋰電池的發展 ................................ ................................ ..... 25
2-5-1 離子液體做為電解質之綜觀 離子液體做為電解質之綜觀 離子液體做為電解質之綜觀 離子液體做為電解質之綜觀 ................................ ......................... 25
2-5-2 導電度 (σ) (σ) ................................ ................................ ......................... 28
2-5-3 黏滯性 (η) (η) (η) 的影響 的影響 ................................ ................................ ............. 28
2-5-4 溫度對於導電性的影響 溫度對於導電性的影響 溫度對於導電性的影響 溫度對於導電性的影響 ................................ ................................ .. 29
2-5-5 電化學穩定性 電化學穩定性 ................................ ................................ .................. 30
2-6 離子液體對固態電解質介面 離子液體對固態電解質介面 離子液體對固態電解質介面 離子液體對固態電解質介面 (SEI) (SEI) 之影響 之影響 ................................ ............ 30
2-7 循環效率及電容量 循環效率及電容量 循環效率及電容量 ................................ ................................ ................. 31
第三章 實驗及儀器原理 實驗及儀器原理 ................................ ................................ ..................... 32
3-1 實驗 ................................ ................................ ................................ ......... 33
3-1-1 二氧化鈦奈米管之製備 二氧化鈦奈米管之製備 二氧化鈦奈米管之製備 二氧化鈦奈米管之製備 ................................ ................................ .. 33
3-1-2 離子液體薄膜製備 離子液體薄膜製備 離子液體薄膜製備 ................................ ................................ .......... 33
3-1-3 離子液體混摻二氧化鈦奈米管之複合薄膜 離子液體混摻二氧化鈦奈米管之複合薄膜 離子液體混摻二氧化鈦奈米管之複合薄膜 離子液體混摻二氧化鈦奈米管之複合薄膜 離子液體混摻二氧化鈦奈米管之複合薄膜 離子液體混摻二氧化鈦奈米管之複合薄膜 ................................ . 34
3-1-4 順向離子液體混摻二氧化鈦奈米管之複合薄膜 順向離子液體混摻二氧化鈦奈米管之複合薄膜 順向離子液體混摻二氧化鈦奈米管之複合薄膜 順向離子液體混摻二氧化鈦奈米管之複合薄膜 順向離子液體混摻二氧化鈦奈米管之複合薄膜 順向離子液體混摻二氧化鈦奈米管之複合薄膜 順向離子液體混摻二氧化鈦奈米管之複合薄膜 ......................... 34
3-2 分析儀器應用理論 分析儀器應用理論 分析儀器應用理論 ................................ ................................ ................. 35
3-2-1 微差掃瞄熱卡計( 微差掃瞄熱卡計( 微差掃瞄熱卡計( Differential Scanning Calorimeter, DSC Differential Scanning Calorimeter, DSCDifferential Scanning Calorimeter, DSC Differential Scanning Calorimeter, DSC Differential Scanning Calorimeter, DSC Differential Scanning Calorimeter, DSC ) ..... 35
3-2-2 熱重分析儀( 熱重分析儀( Thermo Gravimetric Analyzer, TGA Thermo Gravimetric Analyzer, TGAThermo Gravimetric Analyzer, TGAThermo Gravimetric Analyzer, TGA Thermo Gravimetric Analyzer, TGA Thermo Gravimetric Analyzer, TGAThermo Gravimetric Analyzer, TGA Thermo Gravimetric Analyzer, TGAThermo Gravimetric Analyzer, TGA Thermo Gravimetric Analyzer, TGAThermo Gravimetric Analyzer, TGA Thermo Gravimetric Analyzer, TGA Thermo Gravimetric Analyzer, TGA ) ................... 36
3-2-3 交流阻抗分析儀( 交流阻抗分析儀( 交流阻抗分析儀( AC Impedance AC Impedance ) ................................ ............. 36
3-2-4 DC 測量法主要又可分為下列兩種方: 測量法主要又可分為下列兩種方: 測量法主要又可分為下列兩種方: 測量法主要又可分為下列兩種方: 測量法主要又可分為下列兩種方: 測量法主要又可分為下列兩種方: ................................ .. 37
3-2-5 電化學穩定度量測( 電化學穩定度量測( 電化學穩定度量測( linear scanning voltammetrylinear scanning voltammetry linear scanning voltammetry linear scanning voltammetrylinear scanning voltammetrylinear scanning voltammetry linear scanning voltammetrylinear scanning voltammetry,LSV LSV) ........ 47
3-2-6 電池組裝與充放性質量測 電池組裝與充放性質量測 電池組裝與充放性質量測 電池組裝與充放性質量測 ................................ ......................... 49
第四章 結果與討論 結果與討論 ................................ ................................ ............................. 50
4-1 金屬氧化物之結構判定 金屬氧化物之結構判定 金屬氧化物之結構判定 金屬氧化物之結構判定 (SEM) ................................ .............................. 50
4-2 離子液體的選用 離子液體的選用 ................................ ................................ ..................... 51
4-2-1 以市售隔離膜搭配含鋰鹽之子液體電解質選用 以市售隔離膜搭配含鋰鹽之子液體電解質選用 以市售隔離膜搭配含鋰鹽之子液體電解質選用 以市售隔離膜搭配含鋰鹽之子液體電解質選用 以市售隔離膜搭配含鋰鹽之子液體電解質選用 以市售隔離膜搭配含鋰鹽之子液體電解質選用 以市售隔離膜搭配含鋰鹽之子液體電解質選用 ..................... 51
4-2-2 離子液體 /鋰鹽比例的選用 鋰鹽比例的選用 鋰鹽比例的選用 (DSC) (DSC) ................................ .................. 53
4-2-3 離子液體 /鋰鹽之電化學穩定性 鋰鹽之電化學穩定性 鋰鹽之電化學穩定性 (CV)(CV) ................................ ............ 55
4-2-4 離子液體 /鋰鹽之熱穩定性 鋰鹽之熱穩定性 鋰鹽之熱穩定性 (TGA) (TGA) ................................ ................. 56
4-3 高分子複合無機物之離液體電解質熱性探討 高分子複合無機物之離液體電解質熱性探討 高分子複合無機物之離液體電解質熱性探討 高分子複合無機物之離液體電解質熱性探討 高分子複合無機物之離液體電解質熱性探討 高分子複合無機物之離液體電解質熱性探討 高分子複合無機物之離液體電解質熱性探討 ............................. 58
4-3-1 BMImTFSI BMImTFSIBMImTFSI BMImTFSI 與 TiNTTiNT 混合之性質探討 混合之性質探討 (DSC)(DSC) (DSC) ................................ 58
4-3-2 PVdF -HFP HFP與 BMImTFSI BMImTFSIBMImTFSIBMImTFSI 複合之性質探討 複合之性質探討 複合之性質探討 (DSC)(DSC) ....................... 59
4-3-3 TiNTTiNT 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 (DSC) (DSC) ......................... 60
4-4 高分子複合無機物之離液體電解質導度探討 高分子複合無機物之離液體電解質導度探討 高分子複合無機物之離液體電解質導度探討 高分子複合無機物之離液體電解質導度探討 高分子複合無機物之離液體電解質導度探討 高分子複合無機物之離液體電解質導度探討 高分子複合無機物之離液體電解質導度探討 ............................. 62
4-4-1 PVdF -HFP HFP與 BMImTFSI BMImTFSIBMImTFSIBMImTFSI 複合之離子導電度探討 複合之離子導電度探討 複合之離子導電度探討 複合之離子導電度探討 ..................... 62
4-4-2 TiNTTiNT 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 複合之高分子離液體電解質探討 ................................ .... 64
4-4-3 預測模型 ................................ ................................ .......................... 65
4-5 高分子複合無機物之離液體電解質性探討 高分子複合無機物之離液體電解質性探討 高分子複合無機物之離液體電解質性探討 高分子複合無機物之離液體電解質性探討 高分子複合無機物之離液體電解質性探討 高分子複合無機物之離液體電解質性探討 高分子複合無機物之離液體電解質性探討 ................................ . 66
4-5-1 市售薄膜與離子液體高分電解質之比較 市售薄膜與離子液體高分電解質之比較 市售薄膜與離子液體高分電解質之比較 市售薄膜與離子液體高分電解質之比較 市售薄膜與離子液體高分電解質之比較 市售薄膜與離子液體高分電解質之比較 ................................ . 66
4-5-2 PVdF -HFP HFP與 BMITFSI BMITFSI 複合之電性探討 複合之電性探討 複合之電性探討 ................................ ..... 67
4-5-3 TiNTTiNT 複合之高分子離液體電解質性探討 複合之高分子離液體電解質性探討 複合之高分子離液體電解質性探討 複合之高分子離液體電解質性探討 複合之高分子離液體電解質性探討 複合之高分子離液體電解質性探討 複合之高分子離液體電解質性探討 ............................ 70
4-5-4 循環性能測試 循環性能測試 ................................ ................................ .................. 71
4-6 其他影響導電度之因素 其他影響導電度之因素 其他影響導電度之因素 其他影響導電度之因素 ................................ ................................ ......... 72
4-6-1 形狀因素 Particle & Tube Particle & Tube Particle & TubeParticle & Tube ................................ .............................. 72
4-6-2 氧化物因素 氧化物因素 ................................ ................................ ...................... 74
4-6-3 電場因素 ................................ ................................ .......................... 75
第五章 結論與未來展望 結論與未來展望 ................................ ................................ ..................... 77
第六章 參考文獻 ................................ ................................ ................................ . 79
6-1 第一章參考文獻 第一章參考文獻 ................................ ................................ ..................... 79
6-2 第二章參考文獻 第二章參考文獻 ................................ ................................ ..................... 82
參考文獻 〔1〕 J.M. Tarascon, M. Armand, Nature 414 (2001) 359.
〔2〕 D. Aurbach, E. Zinigrad, H. Teller, P. Dan, J. Electrochem. Soc. 147 (2000) 1274.
〔3〕 S.S. Zhang, J. Power Sources 164 (2007) 351.
〔4〕 C.G. Wu, M.I. Lu, C.C. Tsai, H.J. Chuang, J. Power Sources 159 (2006) 295.
〔5〕 H.S. Jeong, D.W. Kim, Y.U. Jeong, S.Y. Lee, J. Power Sources 195 (2010) 6116.
〔6〕 M. Kim, G.Y. Han, K.J. Yoon, J.H. Park, J. Power Sources 195 (2010) 8302.
〔7〕 Y.H. Liao, M.M. Rao, W.S. Li, L.T. Yang, B.K. Zhu, R. Xu, C.H. Fu, J. Membr. Sci. 352 (2010) 95.
〔8〕薛立人, 二次電池之回顧與展望, 工業材料,1999,146,70
〔9〕E. Peled, J. Electrochem. Soc., 1979,126,2047
〔10〕E.Peled, D. Golodnitsky, G. Ardel and V. Eshkenazy, Electrochemica Acta,1995,40,2197
〔11〕E. Peled, D. Golodnitsky and G. Ardel, J. Electrochem. Soc., 1997, 144, L208
〔12〕E. Peled, D.Golodnitsky and J. Penciner, The anode/electrolyte interface, in Handbook of Battery Materials, J.O. Besenhard, Editor, p.419-456, Wiley-VCH, Weinheim, Germany, 1999
〔13〕Y. Ein-Eli, Electrochem. Solid-State Lett., 1999,2,212
〔14〕Aurbach D., Ein-Eli Y., Markovsky B., Zaban A., Luski S., Carmeli Y., Yamin H., J. Electrochem. Soc. 1995,142,2882
〔15〕Ein-Eli Y., Markovsky B., Aurbach D., Carmeli Y., Yamin H., Luski S., Electrochemica Acta, 1994,39,2559
〔16〕Chusid O., Ein-Eil Y., Aurbach D., Babai M., Carmeli Y., J. Power Source, 1993,43/44,47
〔17〕Aurbach D., Ein-Eli Y., Chusid O., Carmeli Y., Babai M., Yamin H., J. Electrochem. Soc., 1994,141,603
〔18〕Ein-Eli Y., Electrochem. Solid-State Lett., 1999,2,212
〔19〕Besenhard J. O., Winter M., Yang J., Biberacher W., J Power Sources, 1993,56,228
〔20〕Ein-Eli Y., Thomas S.R., Koch V.R., J. Electrochem. Soc., 1996,143,L195
〔21〕Ein-Eli Y., Thomas S.R., Koch V.R., J. Electrochem. Soc., 1997,144,1159
〔22〕Shu Z.X., McMillan R.S., Murray J.J., J Electrochem. Soc., 1993,140,922
〔23〕Wilkinson D., Dahn J.R., U.S. Patent 5, 130,211,1992
〔24〕Shu Z.X., McMillan R.S., Murray J.J., J Electrochem. Soc., 1993,140,L101
〔25〕Wang C., Nakamura H., Komatsu H., Yoshio M., Yoshitake H., J. Power Sources, 1998,74,142
〔26〕Simon B., Boeuve J.P., U.S. Patent 5,626,981,1997
〔27〕Bark J., Gao F., U.S. Patent 5,712,059,1998
〔28〕Naruse Y., Fujita S., Omaru A., U.S. Patent 5, 714,281,1998
〔29〕Aurbach D., Gamolsky K., Markovsky B., Gofer Y., Schmidt M., Heider U., Electrochemica. Acta, 2002,47 1423
〔30〕Wrodnigg G.H., Besenhard J.O., Winter M., J Electrochem. Soc., 1999,146,470
〔31〕Naji A., Ghanbaja J.,Willmann P., Billaud D., Electrochemica. Acta, 2000,45,1983
〔32〕Matsuo Y., Fumita K., Fukutsuka T., Sugie Y., Koyama H., Inoue K., J. Power Sources, 2003,119/121,373
〔33〕Blomgren G.E., J. Power Sources, 2003,119/121,326
〔34〕Proceedings of 2004 Taipei International Power Forum, The Solid Electrolyte Interface (SEI) in Lithium Batteries: Understanding and Misunderstanding, 2004, B-5
〔35〕Feullade, P. J. Perche, Appl Electrochem., 1975,63,5
〔36〕Y. T. Kim, E. S. Smotkin, Solid State Ionics,2002,149,29
〔37〕Y. Ito, K. Kanehori, K. Miyauchi, T. Kudo, J. Mater. Sci.,
1987,22,1845
〔38〕M. Watanabe, M. Kanba, H. Matsuda, K. Mizoguchi, I. Shinohara, E.
Tsuchida, Chem.-Rapid. Commun., 1981,2,741
〔39〕A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, U.S. Patent 5,418,091,1995
〔40〕A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, U. S. Patent 5,296,318,1994
〔41〕A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, P. C. Warren, U. S. Patent
5, 418,091,1995
〔42〕A. S. Gozdz, C. N. Schmutz, P. C. Warren, U. S. Patent 5,460,904,1995
〔43〕T. Michot, A. Nishimoto, M. Watanabe, Electrochemica
Acta,2000,45,1347
〔44〕K. Murata, S. Izuchi, Y. Yochihisa, Electrochemica Acta,2000,45,1501
〔45〕A. Naji ; J. Ghanbaja ; P. Willmann ; D. Billaud, , Electrochim. Acta, 2000 45, 1893,
〔46〕Y. Matsuo ; K. Fumita ; T. Fukutsuka; Y. Sugie ; H. Koyama,; K. Inoue,
J. Power Sources, 2003, 119/121, 373
〔47〕G. E. Blomgren , J. Power Sources, 2003, 119/121, 326
〔48〕Proceedings of 2004 Taipei International Power Forum, The Solid Electrolyte Interface(SEI)in Lithium Batteries:Understanding and Misunderstanding, 2004, B-5
〔49〕Xu, K, Chem. Rev., 2004, 104, 4303
〔50〕W. H. Meyer, Adv. Mater., 1998, 10, 439
〔51〕J. S. Tonge ; D. F.Shriver , J, Electrochem. Soc., 1987, 134, 269
〔52〕J. F. Fauvarque , Electrochimica Acta, 2000, 40(13-14), 2295
〔53〕A.S. Gozdz ; J.M. Tarascon,; P.C. Warren,; C.N. Schmutz ,F.K. Shokoohi , Proceedings of the Fifth International Symposium on Polymer Electrolyte, Uppsala, Sweden, 11-16 August, 1996, Paper0-12
〔54〕D. F. Shriver, Macromolecules, 1986, 19, 1508
〔55〕P. Bonhote, ,A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Graetzel, Inorg. Chem. 35, 1168–78 1996
〔56〕A. Mele, G. Romano, M. Giannone, E. Ragg, G. Fronza, G. Raos, V. Marcon, Angew. Chem., Int. Ed.45, 1123–6 2006
〔57〕J. Dupont, P. A. Z. Suarez, R. F. De Souza, R. A. Burrow, J.P. Kintzinger, J.Chem.sEur. 6 2377–2381 2000
〔58〕S. Bruzzone, M. Malvaldi, C. Chiappe, Phys. Chem. Chem. Phys. 9, 5576–5581
2007
〔59〕C. Chiappe, Monatsh. Chem. 138, 1035–43 2007
〔60〕C. G. Hanke, A. Johansson, J. B. Harper, R. M. Lynden-Bell, Chem. Phys. 374, 85–90 2003
〔1〕D. E. Fenton; J. M.Parker; P. V. Wright , Polymer, 1973, 14, 589.
〔2〕P. V. Wright, Polymer, 1975, 7, 319
〔3〕M. B. Armand; J. M. Chabagno, M. J. Duclot, Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, September 1978, 20-22
〔4〕J. E. Weston; B. C. H. Steele, Solid State Ionics, 1981, 2, 347
〔5〕C. Berthier ; W. Gorecki ; M.Minier ; M.B. Armand; J.M. Chabagno ; P.Rigaud , Solid State Ionics, 1983, 11, 91
〔6〕D. F. Shriver ; M. A. Ratner; Chem. Rev., 1988, 88, 109
〔7〕P. G. Bruce , Electrochimica Acta, 1995, 40(13-14), 2077
〔8〕A. M. Christie; O. A. Lisowska; C. A. Vincent , Electrochimica Acta, 1995, 40(13-14), 2405
〔9〕L. Christie; P. Los; P. G. Bruce, , Electrochimica Acta, 1995, 40(13-14),2159
〔10〕 M. Le Granvalet-Mancini; T. Hanrath; D. Teeters , Solid State Ionics,2000, 135(1-4), 283
〔11〕M. C. Borghini; M. Mastragostino; A. Zanelli, Journal of Power Sources, 1997, 68(1), 52
〔12〕D. Benrabah ; J. Y. Sanchez,; M. Armand, Solid State Ionics, 1993, 60,87
〔13〕D. Benrabah; J. Y. Sanchez; D. Deroo; M. Armand, Solid State Ionics, 1994, 70/71, 157
〔14〕H. M. Kao; Y. Y. Tsai; S. W. Chao , Solid State Ionics, 2005, 176 (13-14), 1261
〔15〕S. Rajendran; O. Mahendran; R. Kannan, Journal of Physics and Chemistry of Solids, 2002, 63(2), 303
〔16〕T. Itoh; S. Horii; T. Uno; M. Kubo; O. Yamamoto, Electrochimica Acta, 2004, 50(2-3), 271
〔17〕S. Ramesh; A.K. Arof, Materials Science and Engineering: B, 2001, 85(1), 11
〔18〕Q. Wang; J. Gao; Y. Qian, European Polymer Journal, 1996, 32(3), 299
〔19〕M. Aldissi, Journal of Power Sources, 2001, 94(2), 219
〔20〕E. Morales; J. L. Acosta , Solid State Ionics, 1998, 111(1-2), 109
〔21〕C. H. Park; D. W. Kim; J. Prakash; Y. K. Sun, Solid State Ionics, 2003, 159(1-2), 111
〔22〕 M. Forsyth; P. M. Meakin; D. R. MacFarlane, Electrochimica Acta, 1995, 40(13-14), 2339
〔23〕S. Rajendran; M. Sivakumar; R. Subadevi, Materials Letters, 2004, 58(5), 641
〔24〕X. Qian; N. Gu; Z. Cheng; X. Yang; E. Wang; S. Dong, Materials Chemistry and Physics, 2002, 74(1), 98
〔25〕K. Edelmann; B. Sandner, Solid State Ionics, 2004, 170(3-4), 225
〔26〕D. K. Pradhan; B. K. Samantaray; R. N. P. Choudhary; A.
K. Thakur, Journal of Power Sources, 2005, 139(1-2), 384
〔27〕X. Q. Yang; H. S. Lee; L. Hanson; J. McBreen; Y. Okamoto, Journal of Power Sources, 1995, 54(2), 198
〔28〕M. S. Michael; M. M. E. Jacob; S. R. S. Prabaharan; S. Radhakrishna , Solid State Ionics, 1997, 98(3-4), 167
〔29〕洪傳獻, chemistry, 1999, 57, 175
〔30〕J. Weston; B.C.H. Steel, Solid State Ionics, 1982, 7, 75
〔31〕W. Wieczorek; A. Zalewska; D. Raducha; Z. Florjanczyk; J.R. Stevens, J. Phys. Chem. B, 1998, 102, 352.
〔32〕A.S. Best; J. Adebarhr; P. Jacobsson; D.R. MacFarlane; M. Forsyth , Macromolecules, 2001, 34, 4549
〔33〕F. Croce; R. Curini ; A. Martinelli; L. Persi; F. Ronci; B. Scrosati, J. Phys. Chem. B, 1999, 103, 10632
〔34〕W. Wierzovek ; P. Lipka; G. Zukowska; H. Wycislik, J. Phys. Chem. B, 1998, 102, 6968
〔35〕A.S. Best, A. Ferry, D.R. MacFarlane, M. Forsyth, Solid State Ionics, 1999, 126(3-4), 269
〔36〕B. Kumar; L.G. Scanlon, Solid State Ionics,1999, 124(3-4), 239
〔37〕J. H. Shin; F. Alessandrini ; S. Passerini, J. Electrochem. Soc., 2005, 152, A283.
〔38〕X. Li; Y. Zhao; L. Cheng; M. Yan; X. Zheng; Z. Gao; Z. Jiang, J. Solid State Electrochem., 2005, 9, 609.
〔39〕J. H. Ahn; G. X. Wang; H. K. Liu; S. X. Dou, J. Power Sources, 2003, 119-121, 422.
〔40〕J. Xi; X. Tang, Electrochimica Acta, 2005, 50(27), 5293
〔41〕M. J. Reddy; P. P. Chu, Journal of Power Sources, 2004, 135(1-2),1
〔42〕P. P. Chu; M. J. Reddy; H. M. Kao, Solid State Ionics, 2003, 156 (1-2),141
〔43〕H. Y. Sun; H. J. Sohn; O. Yamamoto; N. Imanishi, J. Electrochem. Soc., 1999, 146, 1672
〔44〕H.Y. Sun; Y. Takeda; N. Imanishi; O. Yamamoto; H. J. Sohn, J. Electrochem. Soc., 2000, 147, 2462
〔45〕T. Itoh; Y. Ichikawa; Y. Uno ; M. Kubo; O. Yamamoto, Solid State Ionics, 2003, 156, 393
〔46〕C. S. Liao; W. B. Ye, Materials Chemistry and Physics, 2004, 88(1),84
〔47〕C. S. Liao; W. B. Ye, Electrochimica Acta, 2004, 49(27), 4993
〔48〕Y. Liu; J. Y. Lee; L. Hong, Journal of Power Sources, 2002, 109, 507
〔49〕莊萬發, 超微粒子理論應用, 1998(民87)
〔50〕J. K. Burdett ; T. Hughbanks; G. J. Miller; J. W. Richardson, J. Am. Chem. Soc., 1987, 109, 3639
〔51〕T. J. Bastow; H. J. Whitfield, Chem. Mater., 1999, 11, 3518
〔52〕C. Gervais; M. E. Smith; A. Pottier ; J.P. Jolivet; F. Babonneau, Chem. Mater., 2001, 13, 462
〔53〕W. S. Won; B. P. Seung; H. S. Chae; J. M. Sang, J. Mater. Sci., 2001,
36, 4299
〔54〕T. D. Robert; L. D. Laude; V. M. Geskin; R. Lazzaroni; R. Gouttebaron, Thin Solid Films, 2003, 440, 268
〔55〕S. Sodergren; H. Siegbahn; H. Rensmo; H. Lindstrom; A. Hagfeldt; S.E. Lindquist , J. Phys. Chem. B, 1997, 101, 3087
〔56〕M. Wagemaker; R. van de Krol; A. P. M. Kentgens; A. A. van Well; F. M. Mulder, J. Am. Chem. Soc., 2001, 123, 11454
〔57〕S. Y. Huang; L. Kavan; I. Exnar, J. Electrochem. Soc., 1995, 142, L142
〔58〕Z. Zhang; Z. L. Gong ; Y. Yang, J. Phys. Chem. B, 2004, 108, 17546
〔59〕高濂、鄭珊、張清紅, 奈米光觸媒, 93 年四月
〔60〕G. K. Mor; K. Shankar; M. Paulose; O. K. Varghese; C. A. Grimes, Nano Lett., 2005, 5, 191
〔61〕S. Lee; C. Jeon; Y. Park, Chem. Mater., 2004, 16, 4292
〔62〕C. Xiong; K. J. Balkus, Jr., Chem. Mater., 2005, 17, 5136
〔63〕B. Smarsly; D. Grosso; T. Brezesinski; N. Pinna, Chem. Mater., 2004, 16, 2948
〔64〕C.W. Wu; T. Ohsuna; M. Kuwabara; K. Kuroda, J. Am. Chem. Soc., 2006, 128, 4544
〔65〕T. Kasuga; M. Hiramatsu; A. Hoson; T. Sekino; K. Niihara, Adv. Mater., 1999, 11, 1307
〔66〕M. Zhang; Z. Jin; J. Zhang; X. Guo; J. Yang; W. Li; X. Wang; Z. Zhang, J. Mol. Catal. A: Chem., 2004, 217, 203
〔67〕C.C. Tsai; H. Teng, Chem. Mater., 2006, 18, 367
〔68〕R.E. Kesting, Phase inversion membranes, in: D.R. Lloyd (Ed.), Materials Science of Synthetic Membrane, ACS Symposium Series No. 269, American Chemical Society, Washington, DC, 1985.
〔69〕M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publisher, Dordrecht, 1996.
〔70〕X.M. He, C.R. Wan,Radiat. Meas. 41 (1) 120–122, 2006
〔71〕P. Apel, Radiat. Meas. 34 559–566, 2001
〔72〕X.M. He, Z.G. Sun, C.R. Wan, Radiat. Meas. 41 (1) 112–113,2001
〔73〕H.G. Mary, Encyclopedia of Chemical Technology, 4th ed., John Wiley & Sons Inc., New York, 1994.
〔74〕A. Magistris, P. Mustarelli, F. Parazzoli, E. Quartarone, P. Piaggio, A. Bottino, J. Power Sources 97–98,657–660,2001
〔75〕F. Boudin, X. Andrieu, C. Jehoulet, I.I. Olsen, J. Power Sources 82, 804–807,1999
〔76〕A. Du Pasquier, P.C. Warren, D. Culver, A.S. Gozdz, G.G. Amatucci, J.M. Tarascon, Solid State Ionics 135,249–257,2000
〔77〕 A.M. Stephan, D. Teeters, J. Power Sources 119, 460–464, 2003
〔78〕 E. Quartarone, P. Mustarelli, A. Magistris, J. Phys. Chem. B 106, 10828–10833,2002
〔79〕 Y.M. Lee, J.W. Kim, N.S. Choi, J.A. Lee, W.H. Seol, J.K. Park, J. Power Sources 139,235–241,2005
〔80〕 Z.H. Li, G.Y. Su, X.Y. Wang, D.S. Gao, Solid State Ionics 176, 1903–1908,2005
〔81〕 J.H. Cao, B.K. Zhu, G.L. Ji, Y.Y. Xu, J. Membr. Sci. 266, 102–109,2005
〔82〕 P. Walden, Bull. Acad. Imper. Sci. (1914) 1800.
〔83〕F.H. Hurley, US Patent 4,446,331 (1948).
〔84〕T.P. Wier Jr., F.H. Hurley, US Patent 4,446,349 (1948).
〔85〕J.T. Yoke, J.F. Weiss, G. Tallen, Inorg. Chem. 2 (1963) 1210.
〔86〕C.G. Swain, A. Ohno, D.K. Roe, R. Brown, T. Maugh, J. Am. Chem. Soc. 89 (1967) 2648.
〔87〕H.L. Chum, V.R. Koch, L.L. Miller, R.A. Osteryoung, J. Am. Chem. Soc. 97 (1975) 3264.
〔88〕J. Gate, B. Gilbert, R.A. Osteryoung, Inorg. Chem. 17 (1978) 2728.
〔89〕J. Robinson, R.A. Osteryoung, J. Am. Chem. Soc. 101 (1979) 323.
〔90〕J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey, Inorg. Chem. 21 (1982) 1263.
〔91〕T.B. Scheffer, C.L. Hussey, K.R. Seddon, C.M. Kear, P.D. Armitage, Inorg. Chem. 22 (1983) 2099.
〔92〕T.M. Laher, C.L. Hussey, Inorg. Chem. 22 (1983) 3247.
〔93〕T.B. Scheffler, C.L. Hussey, Inorg. Chem. 23 (1984) 1926.
〔94〕D. Appleby, C.L. Hussey, K.R. Seddon, J.E. Turp, Nature 323 (1986) 614.
〔95〕A.J. Dent, K.R. Seddon, T. Welton, J. Chem. Soc. Chem. Commun. (1990) 315.
〔96〕J.S. Wilkes, M.J. Zaworotko, J. Chem. Soc. Chem. Commun. (1992) 965.
〔97〕D. Zhao, Z. Fei, R. Scopelliti, P.J. Dyson, Inorg. Chem. 43 (2004) 2197.
〔98〕Y. Yoshida, K. Muroi, A. Otsuka, G. Saito, M. Takahashi, T. Yoko,Inorg. Chem. 43 (2004) 1458.
〔99〕H. Vogel, Phys. Z. 22 (1921) 645;G.S. Fubher, J. Am. Ceram Soc. 8 (1925) 339.
〔100〕A. Lewandowski, I. St˛epniak, Phys. Chem. Chem. Phys. 5 (2003) 4215.
〔101〕N. Munichandraiah, L.G. Scanlon, R.A. Marsh, J. Power Sources 72, 203,1998.
〔102〕D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, D. Kovacheva, J. Power Sources 165, 491, 2007
〔103〕S.S. Zhang, J. Power Sources 162, 1379, 2006
〔104〕V. Eshkenazi, E. Peled, L. Burstein, D. Golodnitsky, Solid State Ionics 170, 83, 2004
〔105〕K. Edstrom, M. Herstedt, D.P. Abraham, J. Power Sources 153, 380,2006
〔106〕M. Holzapfel, C. Jost, P. Novak, Chem. Commun. 2098, 2004
〔107〕M. Egashira, M. Tanaka-Nakagawa, I.Watanabe, S. Okada, J.-I. Yamaki, J. Power Sources 160, 1387, 2006
〔107〕L. Zhao, J.-I. Yamaki, M. Egashira, J. Power Sources 174, 352, 2007
〔108〕M. Egashira, H. Todo, N. Yoshimoto, M. Morita, J.-I. Yamaki, J. Power Sources 174, 560, 2007
〔109〕H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, Y. Aihara, J. Electrochem. Soc. 150, A695, 2003.
〔110〕H. Zheng, J. Qin, Y. Zhao, T. Abe, Z. Ogumi, Solid State Ionics 176, 2219, 2005.
〔111〕 S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, Y. Mita, A. Usami, N. Terada, M. Watanabe, Electrochem. Solid-State Lett. 8, A577, 2005.
指導教授 諸柏仁 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明