博碩士論文 973404004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.219.112.111
姓名 王藪勳(Sho-Hsun Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米結晶氧化鋯合成與分散
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積
★ 沸石晶核的製備與排列★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備
★ 聚芳香羧酸酯之合成及性質研究★ MFI沸石超微粒子之製作
★ 四氯化鈦之控制水解研究★ 具環氧基矽烷包覆奈米粒子之研究
★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究★ 塑膠表面抗磨層之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 奈米氧化鋯粒子表面殘留保護劑時,會對於分散性測試的結果有很大的影響。因此,本研究開發無添加任何保護劑之合成奈米氧化鋯之方法。奈米氧化鋯主要是透過碳酸鋯和氫氧化鈉經低溫水熱法所製備且具有較高的氧化鋯濃度佔整體系統中的25 wt%。奈米氧化鋯的晶相和結晶大小可根據「純鈉比」來進行調控,其「純鈉比」被定義為([Na]-2[CO3])。當「純鈉比」大於0.3時,則可得立方晶之奈米氧化鋯。當「純鈉比」從1.6增加到13.7時,其結晶大小會約從8奈米降至3奈米。
此外,本研究也利用DLVO (Derjaguin-Landau-Verwey-Overbeek)理論來探討表面修飾兩種不同類型改質劑之奈米氧化鋯粒子的分散行為。第一種為表面螯合不同長短碳鏈的有機酸。第二種為表面同時具有疏水性的有機酸和親水性的矽烷。當表面螯合長碳鏈有機酸時,奈米氧化鋯可被分散到介電常數小於7.5的有機溶劑。經固態核磁共振碳譜證實沒有額外的化學物殘留氧化鋯表面。本研究利用「軟鏈接枝模型」分析分散性測試的結果發現有機酸碳鏈的長度必須要大於0.28 nm才能使滲透勢能和彈性勢能在凡德瓦爾勢能變強之前進行抵銷。
奈米氧化鋯可以透過配位體交換法讓表面螯合具有疏水性的有機酸和親水性的矽烷。當表面具有1.90 mmol/g的丁酸和1.34 mmol/g的3-(甲基丙烯酰氧)丙基三甲氧基矽烷時,奈米氧化鋯則具有非常廣泛的分散範圍從非極性有機溶劑的苯到極性有機溶劑的異丙醇。根據DLVO理論的計算,經表面修飾奈米氧化鋯的靜電勢能遠小於位能障礙 (61.72×10-21焦耳,15KBT在298K)即使分散在高介電常數的有機溶劑。因此,奈米氧化鋯能夠具有非常廣泛的分散範圍主要是立體障礙的貢獻。在雙改質劑系統中,選擇適當相對長度的改質劑是一件非常重要的事情,因為當相對長度差距太大時,較短改質劑的性質則會被較長改質劑遮蔽。最後,經表面修飾的氧化鋯可與商用壓克力樹脂混摻且製作出折射率為1.725之奈米複合材料。因此,這樣的奈米粒子技術將可被應用在光學膜領域。
摘要(英) The capping agents remained on the surface of the zirconia nanocrystals have an extensive effect on the dispersion test of nanoparticle. In this study, we developed a method for synthesizing zirconia nanocrystals without any capping agents. The zirconia nanocrystals was processed through zirconium carbonate basic hydrate and sodium hydroxide under the low temperature hydrothermal method. The amount of zirconia obtained per batch was as high as 25 wt%. The crystalline and grain size of zirconia was controlled by the net-Na ratio, defined as ([Na]-2[CO3]) with the produced cubic zirconia larger than 1.6, while the grain size decreased from ~8 nm to ~3 nm between net-Na/Zr=1.6 to 13.7.
In addition, the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was employed for explaining the dispersion behavior of nanoparticles grafted with two types of modifier. The first modifier contains different carbon chain length of carboxylic acid chelated on zirconia surfaces. The second modifier comprises hydrophobic carboxylic acid and hydrophilic silane. When the surface chelated with long chain carboxylic acid, the zirconia nanoparticles can be dispersed in dielectric constant less than 7.5 solvents. According to the solid state 13C NMR spectrum, no additional residues remained on the surface of zirconia nanocrystals. The soft-brush model was used to analyze the dispersion test of nanoparticles. According to the model, the length of the ligands must be longer than 0.28 nm in order for the osmotic and elastic repulsion to offset the van der Waals attraction before the latter becomes too strong.
Zirconia nanocrystals grafted with hydrophobic and hydrophilic groups can be prepared by ligand exchange method. When zirconia nanocrystals grafted with 1.90 mmol of BA and 1.34 mmol of 3-trimethoxysilyl-propyl-methacrylate (MPS) per gram zirconia, they can be dispersed from non-polar solvent such as benzene to polar solvent such as IPA. Base on DLVO calculation, the electrostatic potential was far smaller than the energy barrier of 15KBT even in high dielectric constant solvents; thus, our modified zirconia nanoparticles that can be dispersed in broad range of solvents was due to steric effect. Selecting the relative length is very important to the dispersion behavior in dual modified system because when the relative length becomes large, the short modifier would be shielded by the long modifier. Finally, the modified zirconia nanocrystals can blend with the commercial acrylic resin to produce nanocomposite with high refractive index of 1.725. Therefore, this technology of nanoparticle dispersion can be applied effectively to the research of optical film field.
關鍵字(中) ★ 氧化鋯
★ 分散
★ 表面改質
關鍵字(英) ★ Zirconia
★ Dispersion
★ Surface modification
論文目次 摘要 i
Abstract ii
Table of Contents iv
List of figures vii
List of tables xii
Chapter 1 1
Preliminary study on the dispersion of zirconia nanocrystals 1
1.1 Introduction 1
1.2 Problems to be solved 9
1.3 Organization of the thesis 11
1.4 References 19
Chapter 2 26
The synthesis of dispersible ZrO2 nanocrystals without organic capping agent 26
2.1 Introduction 26
2.1.1 Synthesis of ZrO2 nanocrystals 26
2.1.2 Raman spectroscopic analysis of the zirconia phases 30
2.1.3 Zirconia as catalyst support 31
2.1.4 The productivity of the process 32
2.1.5 The scope of this chapter 32
2.2 Experimental 34
2.2.1 Chemicals 34
2.2.2 Synthesis of ZrO2 nanocrystals 35
2.2.3 Post-treatment 36
2.2.4 Characterization 38
2.3 Results and Discussion 39
2.3.1 The formation of cubic zirconia in ZBC/NaOH system 39
2.3.2 The formation of cubic zirconia in Zr(OH)2/NaCO3/NaOH system 41
2.3.3 The formation of tetragonal phase in ZBC/KOH system 41
2.3.4 The grain size of the zirconia nanocrystals 42
2.3.5 Calcination of the Na-stabilized cubic zirconia 44
2.4 Summary 48
2.5 References 80
Chapter 3 89
Dispersion of carboxylic acid capped zirconia nanocrystals 89
3.1 Introduction 89
3.2 Experimental 94
3.2.1 Chemicals 94
3.2.2 Capping of ZrO2 nanocrystals with carboxylic acid 94
3.2.3 Characterization 95
3.3 Results and Discussion 96
3.3.1 Physicochemical properties of carboxylate capped zirconia 96
3.3.2 The dispersion of carboxylate capped ZrO2 nanocrystals in nonpolar solvents with low dielectric constant (<7.5) 97
3.3.3 Determination of the Flory-Huggins interaction parameter 98
3.3.4 Analysis based on the soft-brush model 100
3.4 Summary 106
3.5 References 124
Chapter 4 128
Dispersion of zirconia nanocrystals with carboxylate-silane dual-ligand 128
4.1 Introduction 128
4.2 Experimental 131
4.2.1 Chemicals 131
4.2.2 Partial exchange of carboxylic ligand with silane 131
4.2.3 Characterization 132
4.3 Results and Discussion 133
4.3.1 Physicochemical properties 133
4.3.2 Analysis of the solvent dispersion behavior 137
4.4 Summary 143
4.5 References 162
Chapter 5 165
Conclusion 165
參考文獻 Chapter 1 References
1. C.H. Shu, H.C. Chiang, R.C.C. Tsiang, T.J. Liu, and J.J. Wu, "Synthesis of organic–inorganic hybrid polymeric nanocomposites for the hard coat application", Journal of Applied Polymer Science, Vol. 103(6): pp. 3985-3993, 2007.
2. Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, "Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability", Journal of Materials Chemistry, Vol. 22(24): pp. 11971-11977, 2012.
3. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, and L.S. Schadler, "TiO2 nanocomposites with high refractive index and transparency", Journal of Materials Chemistry, Vol. 21(46): pp. 18623-18629, 2011.
4. P. Tao, A. Viswanath, Y. Li, R.W. Siegel, B.C. Benicewicz, and L.S. Schadler, "Bulk transparent epoxy nanocomposites filled with poly(glycidyl methacrylate) brush-grafted TiO2 nanoparticles", Polymer, Vol. 54(6): pp. 1639-1646, 2013.
5. N. Nakayama and T. Hayashi, "Preparation and characterization of TiO2 and polymer nanocomposite films with high refractive index", Journal of Applied Polymer Science, Vol. 105(6): pp. 3662-3672, 2007.
6. N. Nakayama and T. Hayashi, "Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents", Colloids and Surfaces a-Physicochemical and Engineering Aspects, Vol. 317(1-3): pp. 543-550, 2008.
7. N. Nakayama and T. Hayashi, "Preparation and characterization of TiO2-ZrO2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerization", Composites Part a-Applied Science and Manufacturing, Vol. 38(9): pp. 1996-2004, 2007.
8. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno, "Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles", European Polymer Journal, Vol. 45(3): pp. 630-638, 2009.
9. S. Lee, H.J. Shin, S.M. Yoon, D.K. Yi, J.Y. Choi, and U. Paik, "Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites", Journal of Materials Chemistry, Vol. 18(15): pp. 1751-1755, 2008.
10. P. Tao, Y. Li, R.W. Siegel, and L.S. Schadler, "Transparent dispensible high-refractive index ZrO2/epoxy nanocomposites for LED encapsulation", Journal of Applied Polymer Science, Vol. 130(5): pp. 3785-3793, 2013.
11. P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S.T. Chiang, and C.-Y. Liu, "ZrO2/epoxy nanocomposite for LED encapsulation", Materials Chemistry and Physics, Vol. 136(2–3): pp. 868-876, 2012.
12. T. Otsuka and Y. Chujo, "Preparation and Characterization of Poly(vinylpyrrolidone)/Zirconium Oxide Hybrids by Using Inorganic Nanocrystals", Polymer Journal, Vol. 40(12): pp. 1157-1163, 2008.
13. T. Otsuka and Y. Chujo, "Synthesis of transparent poly(vinylidene fluoride) (PVdF)/zirconium oxide hybrids without crystallization of PVdF chains", Polymer, Vol. 50(14): pp. 3174-3181, 2009.
14. T. Otsuka and Y. Chujo, "Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals", Polymer Journal, Vol. 42(1): pp. 58-65, 2010.
15. S.X. Zhou and L.M. Wu, "Phase separation and properties of UV-curable polyurethane/zirconia nanocomposite coatings", Macromolecular Chemistry and Physics, Vol. 209(11): pp. 1170-1181, 2008.
16. K. Xu, S.X. Zhou, and L.M. Wu, "Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings", Journal of Materials Science, Vol. 44(6): pp. 1613-1621, 2009.
17. D.B. Olson, C.L. Jones, B.U. Kolb, E.S. Goenner, M.J. Hendrickson, and T.L. McKenzie, "Brightness enhancing film and methods of surface treating inorganic nanoparticles", 3M Innovative Properties Company, US patent 7547467, 2009.
18. B.J. Chisholm and J.E. Pickett, "Method of making a high refractive index optical management coating and the coating", General Electric Company, US patent 7045558, 2006.
19. C.B. Walker Jr., B.U. Kolb, E.S. Goenner, V.W. Jones, S. Wang, and J.M. Noyola, "Durable high index nanocomposites for AR coatings", 3M Innovative Properties Company, US patent 7264872, 2007.
20. L.H. Liu, R.F. Kamrath, E. Hao, T.L. McKenzie, M.D. Radcliffe, R.J. Pokorny, C.B. Walker Jr., and A.M. Renstrom, "Flexible high refractive index hardcoat", 3M Innovative Properties Company, US patent 8343622, 2013.
21. J.U. Wieneke, B. Kommob, O. Gaer, I. Prykhodko, and M. Ulbricht, "Systematic investigation of dispersions of unmodified inorganic nanoparticles in organic solvents with focus on the hansen solubility parameters", Industrial and Engineering Chemistry Research, Vol. 51(1): pp. 327-334, 2012.
22. Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, and J.N. Coleman, "Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery", Langmuir, Vol. 26(5): pp. 3208-3213, 2009.
23. P. Christian and M. Bromfield, "Preparation of small silver, gold and copper nanoparticles which disperse in both polar and non-polar solvents", Journal of Materials Chemistry, Vol. 20(6): pp. 1135-1139, 2010.
24. H. Launay, C.M. Hansen, and K. Almdal, "Hansen solubility parameters for a carbon fiber/epoxy composite", Carbon, Vol. 45(15): pp. 2859-2865, 2007.
25. S.H. Wang, J.H. Liu, C.T. Pai, C.W. Chen, P.T. Chung, A.S.T. Chiang, and S.J. Chang, "Hansen solubility parameter analysis on the dispersion of zirconia nanocrystals", Journal of Colloid and Interface Science, Vol. 407(1): pp. 140-147, 2013.
26. A.J. Guenthner, K.R. Lamison, L.M. Lubin, T.S. Haddad, and J.M. Mabry, "Hansen solubility parameters for octahedral oligomeric silsesquioxanes", Industrial & Engineering Chemistry Research, Vol. 51(38): pp. 12282-12293, 2012.
27. T. Arita, Y. Ueda, K. Minami, T. Naka, and T. Adschiri, "Dispersion of fatty acid surface modified ceria nanocrystals in various organic solvents", Industrial & Engineering Chemistry Research, Vol. 49(4): pp. 1947-1952, 2010.
28. C.M. Hansen, "The three dimensional solubility parameter and solvent diffusion coefficient", Danish Technical Press, Ph.D thesis, 1967.
29. T. Arita, K.-i. Moriya, T. Yoshimura, K. Minami, T. Naka, and T. Adschiri, "Dispersion of phosphonic acids surface-modified titania nanocrystals in various organic solvents", Industrial & Engineering Chemistry Research, Vol. 49(20): pp. 9815-9821, 2010.
30. C.W. Chen, X.S. Yang, and A.S.T. Chiang, "An aqueous process for the production of fully dispersible t-ZrO2 nanocrystals", Journal of the Taiwan Institute of Chemical Engineers, Vol. 40(3): pp. 296-301, 2009.
31. C.M. Hansen, Hansen solubility parameters: a user′s handbook, CRC press, pp. 544, 2007.
32. S. Gyergyek, D. Makovec, and M. Drofenik, "Colloidal stability of oleic- and ricinoleic-acid-coated magnetic nanoparticles in organic solvents", Journal of Colloid and Interface Science, Vol. 354(2): pp. 498-505, 2011.
33. M. Iijima and H. Kamiya, "Layer-by-layer surface modification of functional nanoparticles for dispersion in organic solvents", Langmuir, Vol. 26(23): pp. 17943-17948, 2010.
34. M. Iijima, M. Kobayakawa, M. Yamazaki, Y. Ohta, and H. Kamiya, "Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites", Journal of the American Chemical Society, Vol. 131(45): pp. 16342-16343, 2009.
35. A.L. Willis, N.J. Turro, and S. O′Brien, "Spectroscopic characterization of the surface of iron oxide nanocrystals", Chemistry of Materials, Vol. 17(24): pp. 5970-5975, 2005.
36. S.H. Wang, Y.S. Sun, A.S.T. Chiang, H.F. Hung, M.C. Chen, and K. Wood, "Carboxylic acid-directed clustering and dispersion of ZrO2 nanoparticles in organic solvents: a study by small-angle X-ray/neutron scattering and NMR", The Journal of Physical Chemistry C, Vol. 115(24): pp. 11941-11950, 2011.
37. G. Garnweitner, L.M. Goldenberg, O.V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, "Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography", Small, Vol. 3(9): pp. 1626-1632, 2007.
38. S.X. Zhou, G. Garnweitner, M. Niederberger, and M. Antonietti, "Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands", Langmuir, Vol. 23(18): pp. 9178-9187, 2007.
39. X. Bai, A. Pucci, V.T. Freitas, R.A.S. Ferreira, and N. Pinna, "One-step synthesis and optical properties of benzoate- and biphenolate-capped ZrO2 Nanoparticles", Advanced Functional Materials, Vol. 22(20): pp. 4275-4283, 2012.
40. B.V. Derjaguin and L. Landau, "Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes", Acta Phys. Chim. URSS, Vol. 14: pp. 633-662, 1941.
41. E.J.W. Verwey and J.T.G. Overbeek, Theory of the stability of lyophobic colloids, Elsevier, New York, 1948.
42. B. Vincent, J. Edwards, S. Emmett, and A. Jones, "Depletion flocculation in dispersions of sterically-stabilised particles (“soft spheres”)", Colloids and Surfaces, Vol. 18(2–4): pp. 261-281, 1986.
43. S.R. Saunders, M.R. Eden, and C.B. Roberts, "Modeling the precipitation of polydisperse nanoparticles using a total Interaction energy model", The Journal of Physical Chemistry C, Vol. 115(11): pp. 4603-4610, 2011.
44. S.R. Raghavan, J. Hou, G.L. Baker, and S.A. Khan, "Colloidal interactions between particles with tethered nonpolar chains dispersed in polar media:  direct correlation between dynamic rheology and interaction parameters", Langmuir, Vol. 16(3): pp. 1066-1077, 2000.
45. K.Q. Luo, S.X. Zhou, and L.M. Wu, "High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles", Thin Solid Films, Vol. 517(21): pp. 5974-5980, 2009.
46. K. Xu, S. Zhou, and L. Wu, "Dispersion of [gamma]-methacryloxypropyltrimethoxysilane-functionalized zirconia nanoparticles in UV-curable formulations and properties of their cured coatings", Progress in Organic Coatings, Vol. 67(3): pp. 302-310, 2010.
47. B.U. Kolb and B.T. Chien, "Zirconia sol, process of making and composite material", 3M Innovative Properties Company, US patent 6376590, 2002.
48. C.B. Walker Jr., R.A. Mader, E.S. Goenner, B.U. Kolb, S. Wang, and J.M. Noyola, "High refractive index monomers for optical applications", 3M Innovative Properties Company, US patent 7297810, 2007.
49. G.D. Joly, N.E. Schultz, and E. Hao, "Functionalized zirconia nanoparticles and high index films made therefrom", 3M Innovative Properties Company, US patent application 20130046107, 2013.

Chapter 2 References
1. N. Prastomo, H. Muto, M. Sakai, and A. Matsuda, "Formation and stabilization of tetragonal phase in sol–gel derived ZrO2 treated with base-hot-water", Materials Science and Engineering: B, Vol. 173(1–3): pp. 99-104, 2010.
2. J. Joo, T. Yu, Y.W. Kim, H.M. Park, F. Wu, J.Z. Zhang, and T. Hyeon, "Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals", Journal of the American Chemical Society, Vol. 125(21): pp. 6553-6557, 2003.
3. X.X. Xu and X. Wang, "Fine tuning of the sizes and phases of ZrO2 nanocrystals", Nano Research, Vol. 2(11): pp. 891-902, 2009.
4. N. Zhao, D. Pan, W. Nie, and X. Ji, "Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization", Journal of the American Chemical Society, Vol. 128(31): pp. 10118-10124, 2006.
5. S.X. Zhou, G. Garnweitner, M. Niederberger, and M. Antonietti, "Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands", Langmuir, Vol. 23(18): pp. 9178-9187, 2007.
6. G. Garnweitner, L.M. Goldenberg, O.V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, "Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography", Small, Vol. 3(9): pp. 1626-1632, 2007.
7. D.Z. Tan, G. Lin, Y. Liu, Y. Teng, Y.X. Zhuang, B. Zhu, Q.Z. Zhao, and J.R. Qiu, "Synthesis of nanocrystalline cubic zirconia using femtosecond laser ablation", Journal of Nanoparticle Research, Vol. 13(3): pp. 1183-1190, 2011.
8. D.Z. Tan, Y. Teng, Y. Liu, Y.X. Zhuang, and J.R. Qiu, "Preparation of zirconia nanoparticles by pulsed laser ablation in liquid", Chemistry Letters, Vol. 38(11): pp. 1102-1103, 2009.
9. H. Xie, J. Lu, M. Shekhar, J.W. Elam, W.N. Delgass, F.H. Ribeiro, E. Weitz, and K.R. Poeppelmeier, "Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water-gas-shift reaction", ACS Catalysis, Vol. 3(1): pp. 61-73, 2012.
10. H. Wang, G. Li, Y. Xue, and L. Li, "Hydrated surface structure and its impacts on the stabilization of t-ZrO2", Journal of Solid State Chemistry, Vol. 180(10): pp. 2790-2797, 2007.
11. M.N. Tahir, L. Gorgishvili, J. Li, T. Gorelik, U. Kolb, L. Nasdala, and W. Tremel, "Facile synthesis and characterization of monocrystalline cubic ZrO2 nanoparticles", Solid State Sciences, Vol. 9(12): pp. 1105-1109, 2007.
12. Y.Q. Song, H.M. Liu, and D.H. He, "Effects of hydrothermal conditions of ZrO2 on catalyst properties and catalytic performances of Ni/ZrO2 in the partial oxidation of methane", Energy & Fuels, Vol. 24(5): pp. 2817-2824, 2010.
13. N. Zink, F. Emmerling, T. Hager, M. Panthofer, M.N. Tahir, U. Kolb, and W. Tremel, "Low temperature synthesis of monodisperse nanoscaled ZrO2 with a large specific surface area", Dalton Transactions, Vol. 42(2): pp. 432-440, 2013.
14. M. Salavati-Niasari, M. Dadkhah, and F. Davar, "Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor", Polyhedron, Vol. 28(14): pp. 3005-3009, 2009.
15. M. Salavati-Niasari, M. Dadkhah, and F. Davar, "Synthesis and characterization of pure cubic zirconium oxide nanocrystals by decomposition of bis-aqua, tris-acetylacetonato zirconium(IV) nitrate as new precursor complex", Inorganica Chimica Acta, Vol. 362(11): pp. 3969-3974, 2009.
16. G.K. Chuah, S.H. Liu, S. Jaenicke, and J. Li, "High surface area zirconia by digestion of zirconium propoxide at different pH", Microporous and Mesoporous Materials, Vol. 39(1-2): pp. 381-392, 2000.
17. A. Clearfield, "Crystalline hydrous zirconia", Inorganic Chemistry, Vol. 3(1): pp. 146-148, 1964.
18. A. Clearfield, "Process for the production of cubic crystalline zirconia", Nat lead Co., US patent 3334962, 1967.
19. G. Dell’Agli, C. Ferone, G. Mascolo, and M. Pansini, "Crystallization of monoclinic zirconia from metastable phases", Solid State Ionics, Vol. 127(3–4): pp. 223-230, 2000.
20. G. Dell’Agli, A. Colantuono, and G. Mascolo, "The effect of mineralizers on the crystallization of zirconia gel under hydrothermal conditions", Solid State Ionics, Vol. 123(1–4): pp. 87-94, 1999.
21. H. Zheng, K. Liu, H. Cao, and X. Zhang, "l-Lysine-assisted synthesis of ZrO2 nanocrystals and their application in photocatalysis", The Journal of Physical Chemistry C, Vol. 113(42): pp. 18259-18263, 2009.
22. S.H. Wang, J.H. Liu, C.T. Pai, C.W. Chen, P.T. Chung, A.S.T. Chiang, and S.J. Chang, "Hansen solubility parameter analysis on the dispersion of zirconia nanocrystals", Journal of Colloid and Interface Science, Vol. 407(1): pp. 140-147, 2013.
23. M. Niederberger, G. Garnweitner, J. Buha, J. Polleux, J.H. Ba, and N. Pinna, "Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents", Journal of Sol-Gel Science and Technology, Vol. 40(2-3): pp. 259-266, 2006.
24. X. Bai, A. Pucci, V.T. Freitas, R.A.S. Ferreira, and N. Pinna, "One-step synthesis and optical properties of benzoate- and biphenolate-capped zrO2 Nanoparticles", Advanced Functional Materials, Vol. 22(20): pp. 4275-4283, 2012.
25. T. Arantes, G. Mambrini, D. Stroppa, E. Leite, E. Longo, A. Ramirez, and E. Camargo, "Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process", Journal of Nanoparticle Research, Vol. 12(8): pp. 3105-3110, 2010.
26. S. Manna, T. Ghoshal, A.K. Deb, and S.K. De, "Structural stability and optical properties of nanocrystalline zirconia", Journal of Applied Crystallography, Vol. 43(4): pp. 780-789, 2010.
27. W.Z. Li, H. Huang, H.J. Li, W. Zhang, and H.C. Liu, "Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation", Langmuir, Vol. 24(15): pp. 8358-8366, 2008.
28. G. Fagherazzi, P. Canton, A. Benedetti, F. Pinna, G. Mariotto, and E. Zanghellini, "Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia", Journal of Materials Research, Vol. 12(2): pp. 318-321, 1997.
29. D. Gazzoli, G. Mattei, and M. Valigi, "Raman and X-ray investigations of the incorporation of Ca2+ and Cd2+ in the ZrO2 structure", Journal of Raman Spectroscopy, Vol. 38(7): pp. 824-831, 2007.
30. S. Jayakumar, P.V. Ananthapadmanabhan, T.K. Thiyagarajan, K. Perumal, S.C. Mishra, G. Suresh, L.T. Su, and A.I.Y. Tok, "Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders", Materials Chemistry and Physics, Vol. 140(1): pp. 176-182, 2013.
31. Q. Wang, C. Li, M. Guo, C. Hu, and Y. Xie, "Controllable synthesis of zirconia nano-powders using vapor-phase hydrolysis and theoretical analysis", Journal of Materials Chemistry A, Vol. 2(5): pp. 1346-1352, 2014.
32. H. Wang, G.S. Li, Y.F. Xue, and L.P. Li, "Hydrated surface structure and its impacts on the stabilization of t-ZrO2", Journal of Solid State Chemistry, Vol. 180(10): pp. 2790-2797, 2007.
33. P.E. Quintard, P. Barbéris, A.P. Mirgorodsky, and T. Merle-Méjean, "Comparative lattice-dynamical study of the Raman spectra of monoclinic and tetragonal phases of zirconia and hafnia", Journal of the American Ceramic Society, Vol. 85(7): pp. 1745-1749, 2002.
34. L.D. Kock, M.D.S. Lekgoathi, E. Snyders, J.B. Wagener, J.T. Nel, and J.L. Havenga, "The determination of percentage dissociation of zircon (ZrSiO4) to plasma-dissociated zircon (ZrO2.SiO2) by Raman spectroscopy", Journal of Raman Spectroscopy, Vol. 43(6): pp. 769-773, 2012.
35. G. Duan, X. Yang, A. Lu, G. Huang, L. Lu, and X. Wang, "Comparison study on the high-temperature phase stability of CaO-doped zirconia made using different precipitants", Materials Characterization, Vol. 58(1): pp. 78-81, 2007.
36. S. Guerrero, P. Araya, and E.E. Wolf, "Methane oxidation on Pd supported on high area zirconia catalysts", Applied Catalysis A: General, Vol. 298(1-2): pp. 243-253, 2006.
37. G.K. Chuah and S. Jaenicke, "The preparation of high surface area zirconia — Influence of precipitating agent and digestion", Applied Catalysis A: General, Vol. 163(1–2): pp. 261-273, 1997.
38. G. Aguila, S. Guerrero, F. Gracia, and P. Araya, "Improvement of the thermal stability of hydrous zirconia by post-synthesis treatment with NaOH and NH4OH solutions", Applied Catalysis A: General, Vol. 305(2): pp. 219-232, 2006.
39. S. Jaenicke, G.K. Chuah, V. Raju, and Y.T. Nie, "Structural and morphological control in the preparation of high surface area zirconia", Catalysis Surveys from Asia, Vol. 12(3): pp. 153-169, 2008.
40. S. Sato, R. Takahashi, T. Sodesawa, S. Tanaka, K. Oguma, and K. Ogura, "High-surface-area SiO2–ZrO2 prepared by depositing silica on zirconia in aqueous ammonia solution", Journal of Catalysis, Vol. 196(1): pp. 190-194, 2000.
41. C.W. Chen, X.S. Yang, and A.S.T. Chiang, "An aqueous process for the production of fully dispersible t-ZrO2 nanocrystals", Journal of the Taiwan Institute of Chemical Engineers, Vol. 40(3): pp. 296-301, 2009.
42. F.G.R. Gimblett, A. Hussain, and K.S.W. Sing, "Thermal and related studies of some basic zirconium salts", Journal of thermal analysis, Vol. 34(4): pp. 1001-1013, 1988.
43. X. Lu, K. Liang, S. Gu, Y. Zheng, and H. Fang, "Effect of oxygen vacancies on transformation of zirconia at low temperatures", Journal of Materials Science, Vol. 32(24): pp. 6653-6656, 1997.
44. C. Li and M. Li, "UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3–ZrO2 and SO42−/ZrO2", Journal of Raman Spectroscopy, Vol. 33(5): pp. 301-308, 2002.
45. M. Li, Z. Feng, G. Xiong, P. Ying, Q. Xin, and C. Li, "Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy", The Journal of Physical Chemistry B, Vol. 105(34): pp. 8107-8111, 2001.
46. R.C. Garvie, "The occurrence of metastable tetragonal zirconia as a crystallite size effect", The Journal of Physical Chemistry, Vol. 69(4): pp. 1238-1243, 1965.
47. X.L. Liu, I. Pappas, M. Fitzgerald, Y.J. Zhu, M. Eibling, and L. Pan, "Solvothermal synthesis and characterization of ZrO2 nanostructures using zirconium precursor", Materials Letters, Vol. 64(14): pp. 1591-1594, 2010.
48. K. Sato, H. Abe, and S. Ohara, "Selective growth of monoclinic and tetragonal zirconia nanocrystals", Journal of the American Chemical Society, Vol. 132(8): pp. 2538-2539, 2010.
49. S. Zinatloo-Ajabshir and M. Salavati-Niasari, "Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route", Journal of Industrial and Engineering Chemistry, Vol. 20(5): pp. 3313-3319, 2014.
50. T.A. Cheema and G. Garnweitner, "Phase-controlled synthesis of ZrO2 nanoparticles for highly transparent dielectric thin films", CrystEngComm, Vol. 16(16): pp. 3366-3375, 2014.
51. R.P. Denkewicz, K.S. TenHuisen, and J.H. Adair, "Hydrothermal crystallization kinetics of m-ZrO2 and t-ZrO2", Journal of Materials Research, Vol. 5(11): pp. 2698-2705, 1990.
52. G.K. Chuah, S. Jaenicke, S.A. Cheong, and K.S. Chan, "The influence of preparation conditions on the surface area of zirconia", Applied Catalysis A: General, Vol. 145(1–2): pp. 267-284, 1996.
53. H.M. Cheng, L.J. Wu, J.M. Ma, Z.Y. Zhang, and L.M. Qi, "The effects of pH and alkaline earth ions on the formation of nanosized zirconia phases under hydrothermal conditions", Journal of the European Ceramic Society, Vol. 19(8): pp. 1675-1681, 1999.
54. H.J. Noh, D.S. Seo, H. Kim, and J.K. Lee, "Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process", Materials Letters, Vol. 57(16–17): pp. 2425-2431, 2003.
55. K. Anandan and a.V. Rajendran, "A low-temperature synthesis and characterization of tetragonal-ZrO2 nanoparticles via simple hydrothermal process", Journal of Physical Sciences, Vol. 17: pp. 179-184, 2013.
56. G. Xu, Y.W. Zhang, C.S. Liao, and C.H. Yan, "Doping and grain size effects in nanocrystalline ZrO2-Sc2O3 system with complex phase transitions: XRD and Raman studies", Physical Chemistry Chemical Physics, Vol. 6(23): pp. 5410-5418, 2004.
57. G. Xu, Y.W. Zhang, C.S. Liao, and C.H. Yan, "Tetragonal-to-monoclinic phase transitions in nanocrystalline rare-earth-stabilized zirconia prepared by a mild hydrothermal method", Journal of the American Ceramic Society, Vol. 87(12): pp. 2275-2281, 2004.
58. D. Simeone, J.L. Bechade, D. Gosset, A. Chevarier, P. Daniel, H. Pilliaire, and G. Baldinozzi, "Investigation on the zirconia phase transition under irradiation", Journal of Nuclear Materials, Vol. 281(2–3): pp. 171-181, 2000.
59. M. Ishigame and T. Sakurai, "Temperature dependence of the Raman spectra of ZrO2", Journal of the American Ceramic Society, Vol. 60(7-8): pp. 367-369, 1977.
60. R.D. Purohit, S. Saha, and A.K. Tyagi, "Combustion synthesis of nanocrystalline ZrO2 powder: XRD, Raman spectroscopy and TEM studies", Materials Science and Engineering: B, Vol. 130(1–3): pp. 57-60, 2006.
61. D.A. Ward and E.I. Ko, "Synthesis and structural transformation of zirconia aerogels", Chemistry of Materials, Vol. 5(7): pp. 956-969, 1993.
62. H. Kishimoto, N. Sakai, K. Yamaji, T. Horita, Y.-P. Xiong, M. Brito, and H. Yokokawa, "Destabilization of cubic-stabilized zirconia electrolyte induced by boron oxide under reducing atmosphere", Journal of Materials Science, Vol. 44(2): pp. 639-646, 2009.
63. C.N. Chervin, B.J. Clapsaddle, H.W. Chiu, A.E. Gash, J.H. Satcher, and S.M. Kauzlarich, "Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol−gel route", Chemistry of Materials, Vol. 17(13): pp. 3345-3351, 2005.
64. A. Sekulic, K. Furic, A. Tonejc, A.M. Tonejc, and M. Stubicar, "Determination of the monoclinic, tetragonal and cubic phases in mechanically alloyed ZrO2-Y2O3 and ZrO2-CoO powder mixtures by Raman spectroscopy", Journal of Materials Science Letters, Vol. 16(4): pp. 260-262, 1997.

Chapter 3 References
1. S.H. Wang, J.H. Liu, C.T. Pai, C.W. Chen, P.T. Chung, A.S.T. Chiang, and S.J. Chang, "Hansen solubility parameter analysis on the dispersion of zirconia nanocrystals", Journal of Colloid and Interface Science, Vol. 407(1): pp. 140-147, 2013.
2. B.V. Derjaguin and L. Landau, "Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes", Acta Phys. Chim. URSS, Vol. 14: pp. 633-662, 1941.
3. E.J.W. Verwey and J.T.G. Overbeek, Theory of the stability of lyophobic colloids, Elsevier, New York, 1948.
4. G. Fritz, V. Schädler, N. Willenbacher, and N.J. Wagner, "Electrosteric stabilization of colloidal dispersions", Langmuir, Vol. 18(16): pp. 6381-6390, 2002.
5. J.N. Israelachvili, Intermolecular and surface forces, Third, Elsevier, California, 2011.
6. D. Segets, R. Marczak, S. Schäfer, C. Paula, J.F. Gnichwitz, A. Hirsch, and W. Peukert, "Experimental and theoretical studies of the colloidal stability of nanoparticles−a general interpretation based on stability maps", ACS Nano, Vol. 5(6): pp. 4658-4669, 2011.
7. B.S. Kim, V. Lobaskin, R. Tsekov, and O.I. Vinogradova, "Dynamics and stability of dispersions of polyelectrolyte-filled multilayer microcapsules", The Journal of Chemical Physics, Vol. 126(24): pp. 244901-244909, 2007.
8. T. Kim, K. Lee, M.s. Gong, and S.W. Joo, "Control of gold nanoparticle aggregates by manipulation of interparticle interaction", Langmuir, Vol. 21(21): pp. 9524-9528, 2005.
9. K. Lee, A.N. Sathyagal, and A.V. McCormick, "A closer look at an aggregation model of the Stöber process", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 144(1–3): pp. 115-125, 1998.
10. H. Ohshima, "Effective surface potential and double-layer interaction of colloidal particles", Journal of Colloid and Interface Science, Vol. 174(1): pp. 45-52, 1995.
11. A. Reindl and W. Peukert, "Intrinsically stable dispersions of silicon nanoparticles", Journal of Colloid and Interface Science, Vol. 325(1): pp. 173-178, 2008.
12. B. Vincent, J. Edwards, S. Emmett, and A. Jones, "Depletion flocculation in dispersions of sterically-stabilised particles (“soft spheres”)", Colloids and Surfaces, Vol. 18(2–4): pp. 261-281, 1986.
13. S.R. Saunders, M.R. Eden, and C.B. Roberts, "Modeling the precipitation of polydisperse nanoparticles using a total Interaction energy model", The Journal of Physical Chemistry C, Vol. 115(11): pp. 4603-4610, 2011.
14. C.L. Kitchens and C.B. Roberts, "Copper nanoparticle synthesis in compressed liquid and supercritical fluid reverse micelle systems", Industrial & Engineering Chemistry Research, Vol. 43(19): pp. 6070-6081, 2004.
15. C.L. Kitchens, M.C. McLeod, and C.B. Roberts, "Solvent effects on the growth and steric stabilization of copper metallic nanoparticles in AOT reverse micelle systems", The Journal of Physical Chemistry B, Vol. 107(41): pp. 11331-11338, 2003.
16. G. Garnweitner, L.M. Goldenberg, O.V. Sakhno, M. Antonietti, M. Niederberger, and J. Stumpe, "Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography", Small, Vol. 3(9): pp. 1626-1632, 2007.
17. S.X. Zhou, G. Garnweitner, M. Niederberger, and M. Antonietti, "Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands", Langmuir, Vol. 23(18): pp. 9178-9187, 2007.
18. X. Bai, A. Pucci, V.T. Freitas, R.A.S. Ferreira, and N. Pinna, "One-step synthesis and optical properties of benzoate- and biphenolate-capped ZrO2 nanoparticles", Advanced Functional Materials, Vol. 22(20): pp. 4275-4283, 2012.
19. J.D. Miller and H. Ishida, "Quantitative monomolecular coverage of inorganic particulates by methacryl-functional silanes", Surface Science, Vol. 148(2–3): pp. 601-622, 1984.
20. H. Heinz, R.A. Vaia, and B.L. Farmer, "Relation between packing density and thermal transitions of alkyl chains on layered silicate and metal surfaces", Langmuir, Vol. 24(8): pp. 3727-3733, 2008.
21. T. Arita, J. Yoo, and T. Adschiri, "Relation between the solution-state behavior of self-assembled monolayers on nanoparticles and dispersion of nanoparticles in organic solvents", The Journal of Physical Chemistry C, Vol. 115(10): pp. 3899-3909, 2011.
22. T. Arita, J. Yoo, Y. Ueda, and T. Adschiri, "Highly concentrated colloidal dispersion of decanoic acid self-assembled monolayer-protected CeO2 manoparticles dispersed to a concentration of up to 77 wt % in an organic solvent", Chemistry Letters, Vol. 41(10): pp. 1235-1237, 2012.
23. C.M. Hansen, Hansen solubility parameters : a user′s hand book, Second, CRC Press, Florida, 2007.
24. D.W. Van Krevelen and P.J. Hoftyzer, Properties of polymers, their estimation and correlation with chemical structure, First, Elsevier New York, 1976.

Chapter 4 References
1. S.H. Wang, J.H. Liu, C.T. Pai, C.W. Chen, P.T. Chung, A.S.T. Chiang, and S.J. Chang, "Hansen solubility parameter analysis on the dispersion of zirconia nanocrystals", Journal of Colloid and Interface Science, Vol. 407(1): pp. 140-147, 2013.
2. S.X. Zhou and L.M. Wu, "Phase separation and properties of UV-curable polyurethane/zirconia nanocomposite coatings", Macromolecular Chemistry and Physics, Vol. 209(11): pp. 1170-1181, 2008.
3. K. Xu, S.X. Zhou, and L.M. Wu, "Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings", Journal of Materials Science, Vol. 44(6): pp. 1613-1621, 2009.
4. T. Otsuka and Y. Chujo, "Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals", Polymer Journal, Vol. 42(1): pp. 58-65, 2010.
5. C.B. Walker Jr., R.A. Mader, E.S. Goenner, B.U. Kolb, S. Wang, and J.M. Noyola, "High refractive index monomers for optical applications", 3M Innovative Properties Company, US patent 7297810, 2007.
6. P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S.T. Chiang, and C.Y. Liu, "ZrO2/epoxy nanocomposite for LED encapsulation", Materials Chemistry and Physics, Vol. 136(2–3): pp. 868-876, 2012.
7. L. Piao, K.H. Lee, W.J. Kwon, S.H. Kim, and S. Yoon, "The simple and facile methods to improve dispersion stability of nanoparticles: Different chain length alkylcarboxylate mixtures", Journal of Colloid and Interface Science, Vol. 334(2): pp. 208-211, 2009.
8. N. Nakayama and T. Hayashi, "Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents", Colloids and Surfaces a-Physicochemical and Engineering Aspects, Vol. 317(1-3): pp. 543-550, 2008.
9. M. Iijima, M. Kobayakawa, and H. Kamiya, "Tuning the stability of TiO2 nanoparticles in various solvents by mixed silane alkoxides", Journal of Colloid and Interface Science, Vol. 337(1): pp. 61-65, 2009.
10. M. Iijima and H. Kamiya, "Layer-by-layer surface modification of functional nanoparticles for dispersion in organic solvents", Langmuir, Vol. 26(23): pp. 17943-17948, 2010.
11. P. Christian and M. Bromfield, "Preparation of small silver, gold and copper nanoparticles which disperse in both polar and non-polar solvents", Journal of Materials Chemistry, Vol. 20(6): pp. 1135-1139, 2010.
12. A.W. Moses, C. Raab, R.C. Nelson, H.D. Leifeste, N.A. Ramsahye, S. Chattopadhyay, J. Eckert, B.F. Chmelka, and S.L. Scott, "Spectroscopically distinct sites present in methyltrioxorhenium grafted onto silica−alumina, and their abilities to initiate olefin metathesis", Journal of the American Chemical Society, Vol. 129(28): pp. 8912-8920, 2007.
13. A. Buchholz, W. Wang, A. Arnold, M. Xu, and M. Hunger, "Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy", Microporous and Mesoporous Materials, Vol. 57(2): pp. 157-168, 2003.
14. D.W. Van Krevelen and P.J. Hoftyzer, Properties of polymers, their estimation and correlation with chemical structure, Elsevier, New York, 1976.
15. E.J.W. Verwey and J.T.G. Overbeek, Theory of the stability of lyophobic colloids, Elsevier, New York, 1948.
16. A. Reindl and W. Peukert, "Intrinsically stable dispersions of silicon nanoparticles", Journal of Colloid and Interface Science, Vol. 325(1): pp. 173-178, 2008.
17. R. Marczak, D. Segets, M. Voigt, and W. Peukert, "Optimum between purification and colloidal stability of ZnO nanoparticles", Advanced Powder Technology, Vol. 21(1): pp. 41-49, 2010.
18. J.N. Israelachvili, Intermolecular and surface forces, Third, Elsevier, California, 2011.
19. C.M. Hansen, Hansen solubility parameters : a user′s hand book, Second, CRC Press, Florida, 2007.
指導教授 蔣孝澈(† Anthony Shiaw-Tseh Chiang) 審核日期 2014-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明