博碩士論文 101324018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.144.103.255
姓名 陳嘉豪(Jia-hao Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以快速熱氧化技術製作雙氧化層電阻式記憶體之研究
(Study of Double-layer Resistive Switching Random Access Memory Prepared by Rapid Thermal Oxidation)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電阻式記憶體(RRAM)有著結構簡單以及單位面積小的優點,故電阻式記憶體在未來非常適合應用在高密度交錯式二微陣列的結構上,以增加記憶體的密度。再加上非揮發性、低耗能、操作速度快以及低成本等優勢,未來將成為記憶體發展的重要趨勢之一。
本實驗分為三個部分,第一部分對鈦金屬(Ti)使用不同快速熱氧化參數所成長的氧化鈦薄膜(TiOx),再以鉑(Pt)為上電極形成的Pt/TiOx/Ti二極體元件作電性量測分析,探討快速熱退火對所成長之氧化鈦的影響;第二部分是二維雙氧化層電阻式記憶體(MIIM double-layer RRAM)的部分,分別以氧化鉭(TaOx)或氧化鋁(Al2O3)搭配快速熱氧化之氧化鈦,以Ta或Pt為上電極所形成Ta/TaOx/TiOx/Ti與Pt/Al2O3/TiOx/Ti結構,比較並探討兩者的電性;第三部分則是探討將雙氧化層電阻式記憶體實現在三維結構之電性量測分析。由於快速熱氧化的製程方式能夠讓氧化鈦區域性的在垂直結構電阻式記憶體的側壁上成長,改善側壁覆蓋率(step coverage)不佳的問題;再者,快速熱氧化之製程參數如氧氮比、加熱溫度、加熱時間皆可大範圍調變,若能利用此方法成長出合適的氧化鈦薄膜,也能透過電性分析探討其影響;因此,在本研究中皆使用快速熱氧化的方式成長氧化鈦。
在Pt/TiOx/Ti結構之二極體元件測試的實驗中,我們可以看到以快速熱氧化的方式,能夠成功地成長出具有整流特性的氧化鈦薄膜;另外在平面雙氧化層電阻式記憶體的實驗中,我們可以看到不同電阻轉換層的元件,皆不會受到讀取時的偏壓所干擾(read disturbance),也都具有相當好的資料儲存能力(retention);在垂直雙氧化層電阻式記憶體的實驗中,我們可以看到以TaOx/TiOx為氧化層的電阻式記憶體,不論是在資料儲存能力或是讀寫測試方面都有不錯的表現,所以證實快速熱氧化的製程方式能夠實現在三維結構的記憶體上。
摘要(英) Resistance Random Access Memory (RRAM) has great potentials in two-dimension (2D) high density crossbar array applications owning to its simple structure and small unit area. Moreover, RRAM has many advantages such as nonvolatile property, low power consumption, high operation speed and low cost. With all these benefits, RRAM become one of the best candidates for next generation nonvolatile memory applications.
There are three main sections in this thesis. In the first section, the oxidation of titanium is investigated by rapid thermal oxidation (RTO) with different conditions. After depositing Pt as top electrode, the electrical analysis of this titanium oxide (TiOx) is also performed. In the second section, we investigate the characteristics of 2D MIIM double-layer RRAM with tantalum oxide (TaOx) or aluminum oxide (Al2O3) deposited on RTO TiOx/Ti structure with Ta or Pt as top electrodes respectively. In the third section, we will discuss the characteristic of double-layer RRAM realized in 3D structure. We use RTO method to grow titanium oxide since this method allows the film to grow locally on the vertical sidewall which can improve the poor step coverage of PVD film. Furthermore, the adjustable RTO conditions including different O2/N2 ratio, temperature and oxidation time that give the various result of TiOx. Therefore, it is worth to investigate the influence on RTO TiOx that may plays an important role in the double-layer RRAM system.
We have successfully fabricated the titanium oxide diode with rectifying characteristic by using RTO method in the first section. In addition, the 2D Ta/TaOx/TiOx/Ti and Pt/Al2O3/TiOx/Ti double-layer RRAM devices have excellent memory retention and the strong immunity to read disturbance ; the 3D double-layer RRAM devices also has the excellent memory retention and the strong immunity to read disturbance , therefore the TiOx formed by RTO process can be used in the three-dimensional MIIM double-layer RRAM.
關鍵字(中) ★ 電阻式記憶體 關鍵字(英) ★ Resistive Switching Random Access Memory
論文目次 摘要 1
Abstract III
誌謝 V
圖目錄 XII
表目錄 XVIII
第一章、緒論 1
1-1 前言 1
1-2 研究動機 3
第二章、簡介 6
2-1 記憶體簡介 6
2-1-1磁阻式記憶體 (MRAM) 8
2-1-2鐵電記憶體 (FeRAM) 10
2-1-3 相變化記憶體 (PCRAM) 11
2-1-4 電阻式記憶體 (RRAM) 13
2-2-1 電阻轉換現象 14
2-2-2 電阻式記憶體量測種類 19
2-3 電阻轉換現象機制 22
2-3-1 金屬離子的電化學效應 (Electrochemical metallization effect) 26
2-3-2 價電子轉換效應 (Valance change effect) 28
2-3-3 熱化學效應 (Thermochemical effect) 30
2-4電阻式記憶體材料 30
2-4-1 多元金屬氧化物 30
2-4-2 過渡金屬氧化物 31
2-4-3有機材料 34
2-5 電阻式記憶體面臨的挑戰 37
第三章、儀器介紹 42
3-1 機台簡介 42
3-1-1 清洗蝕刻工作站 (Wet bench) 42
3-1-2 自動化光阻塗佈及顯影系統 (Track) 43
3-1-3 光學步進機(Canon FPA-3oooi5+ Stepper) 44
3-1-4 光阻剝落法 (Lift-off) 44
3-1-5 金屬乾式蝕刻機 (TCP 9600) 44
3-1-6 乾式光阻去除機 (Fusion Ozone) 45
3-1-7 原子層沉積系統 (ALD) 46
3-1-8 金屬快速升溫退火爐 (RTA) 48
3-1-9 多腔式磁控電漿薄膜系統 (Sputtering System) 49
3-1-10 雙電子槍蒸鍍系統 (Dual E-Gun Evaporation System) 50
3-1-11 場發射穿透式電子顯微鏡(TEM)及X射線能量散佈分析儀(EDX) 51
3-1-12 IV & CV電性量測系統 52
第四章、以鉑金/氧化鈦/鈦(Pt/TiOx/Ti)為結構之二極體元件特性分析 54
4-1 實驗前言 54
4-2 實驗流程 54
4-2-1 實驗流程 54
4-2-2 量測方式 55
4-3 結果與討論 56
4-3-1 調變RTO製程溫度之比較 56
4-3-2 調變RTO通氧時間之比較 57
4-3-3 退火與否之特性比較 58
第五章、平面(2D)雙氧化層電阻式記憶體的測試實驗 62
5-1 實驗前言 62
5-2 實驗流程 62
5-3 結果與討論 63
5-3-1以氧化鉭/氧化鈦組成的雙氧化層電阻式記憶體特性及可靠度分析 63
5-3-2以氧化鋁/氧化鈦組成的雙氧化層電阻式記憶體特性及可靠度分析 69
第六章、垂直(3D)雙氧化層電阻式記憶體的測試實驗 79
6-1 實驗前言 79
6-2 實驗流程 79
6-3 結果與討論 80
6-3-1 以氧化鉭/氧化鈦組成的雙氧化層電阻式記憶體特性及可靠度分析 80
6-3-2 以氧化鋁/氧化鈦組成的雙氧化層電阻式記憶體特性及可靠度分析 86
第七章、結論與未來展望 88
7-1結論 88
7-2 未來展望 89
參考文獻 90
參考文獻 [1] C. Y. Lu, H. Kuan, "Nonvolatile semiconductor memory revolutionizing information storage" IEEE Nanotechnology Magazine.vol. 3, p. 4-9, 2009.
[2] 王韋婷, 應用在RRAM記憶體之氧化鋅薄膜及其電極材料開發, 清華大學, 碩士論文, 2009
[3] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,「先進記憶體簡介」,國研科技創刊號.
[4] G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, “Status and outlook of emerging nonvolatile memory technologies”, Tech. Dig. - Int. Electron Devices Meet. 2004, 567(2004).
[5] 余昭倫,《綜觀新世代記憶體-相變化記憶體》,Digitimes 技術IT(2006).
[6] R. Hallock, "The hows and whys of SSDs", tech-articles, 2008
[7] 葉林秀、李佳謀、徐明豐、吳德和,「磁阻式隨機存取記憶體技術的發展—現在與未來」,物理雙月刊 廿六卷四期,2004.
[8] 張文淵, 以LaNiO3底電極開發(Pr,Ca)MnO3非揮發性電阻記憶體特性之研究, 清華大學, 碩士論文, 2006.
[9] 高明哲,「產要要聞」,2004 年研究報告。
[10] 客橋,「淺談新興非揮發性記憶體技術」,台灣區電機電子工業同業公會,2006。
[11] 高明哲,「非揮發性記憶體,相變化記憶體」,奈米電子元件技術組。
[12] 林宗輝,「記憶體產業大革命超長壽命次世代快閃記憶體技術閱兵」,Digitimes技術IT,2006。
[13] 李思毅, “鐵電記憶體的前瞻與挑戰”, 電子月刊, 鐵電記憶元件特輯, 第四期,2002。
[14] Greg Atwood, “Phase-Change Materials for Electronic Memories”, Science 321, 210(2008), DOI: 10.1126/science.1160231.
[15] R. Waser, R. Dittmann, G. Straikov, and K. Szot, ”Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges”, Volume 21, Issue 25-26, pages 2632–2663, July 13, 2009.
[16] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo , U-In Chung, and J. T. Moon, “Highly Scalable Non-volatile Resisitive Memory using Simply Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses”, Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 587 - 590 (2004).
[17] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films”,Appl. Phys. Lett. 86, 262907(2005).
[18] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, Y. S. Joung, and I. K. Yoo, “Giant and Stable Conductivity Switching Behaviors in ZrO2 Films Deposited by Pulsed Laser Depositions ”, Jpn. J. Appl. Phys. 44 L345(2005).
[19] H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T.A. Tang, B. A. Chen, and Y. Y. Lin, “Forming Process Investigation of CuxO Memory Films”, IEEE Electron Device Lett., 29(1), 47-79(2008).
[20] M. J. Lee, C. B. Lee, S. Kim, H. Yin, J. Park, S. E. Ahn, B. S. Kang, K. H.Kim, G. Stefanovich, I. Song, S. W. Kim, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, C. J. Kim, and Y. Park, "Stack Friendly All-Oxide 3D RRAM using GaInZnO Peripheral TFT realized over Glass Substrates", Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp. 1 - 4, 2008.
[21] J. Van Houdt, "Charge-based nonvolatile memory: Near the end of the roadmap? ", Current Applied Physics, vol. 11, pp. e21-e24, 2011.
[22] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H.Lin, F. Chen, C. H. Lien, and M. J. Tsai, "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM", in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[23] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M. J. Tsai, "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity", in Electron Devices Meeting(IEDM), 2009 IEEE International, 2009, pp.
1-4.
[24] H. Huang, W. Shih, and C. La,“Nonpolar resistive switch in the Pt/MgO/Pt
nonvolatile memory device”, Appl. Phys. Lett. 96, 2010.
[25] A. Baikalov, Y. Q. Wang, B. Shen et al., “Field-driven hysteretic and reversible
resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett. 83(5),
957(2003).
[26] A. Beck, J. G. Bednorz, C. Gerber et al., "Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett. 77(1), 139-141(2000).
[27] B. Gao, L. Liu, X. Liu, and J. Kang, "Resistive switching characteristics in HfOx layer by using current sweep mode", Microelectronic Engineering,vol. 94, pp. 14-17, 2012.
[28] B. Chen, B. Gao, S. W. Sheng, L. F. Liu, X. Y. Liu, Y. S. Chen, Y. Wang, R. Q. Han, B. Yu, and J. F. Kang ",A Novel Operation Scheme for Oxide-Based Resistive-Switching Memory Devices to Achieve Controlled Switching Behaviors," Electron Device Letters, IEEE, vol. 32, pp. 282-284, 2011.
[29] A. Sawa,“Resistive switching in transition metal oxides”, materialstoday, Vol 11,
28(2008).
[30] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H.Lien, and M. J. Tsai, "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity", in Electron Devices Meeting(IEDM), 2009 IEEE International, 2009, pp.
1-4.
[32] E. K. Lai, H. T. Lue, Y. H. Hsiao, J. Y. Hsieh, C. P. Lu, S. Y. Wang, L.W. Yang, T. Yang, K. C. Chen, J. Gong, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A multi-layer stackable thin-film transistor(TFT) NAND-type flash memory,” in IEDM Dig. Tech., pp. 1-4, 2006.
[33] S. M. Jung, J. Jang, W. Cho, H. Cho, J. Jeong, Y. Chang, J. Kim Y.Rah, Y. Son, J. Park, M. S. Song, K. H. Kim, J. S. Lim and K. Kim, “Three dimensionally stacked NAND flash memory technology usingstacking single crystal Si layers on ILD and TANOS structure for beyond 30nm node,” in IEDM Dig. Tech., pp. 37-40, 2006. 90
[34] Tanaka, H., Kido M., Yahashi K., Oomura M., Katsumata R., Kito M., Fukuzumi Y., Sato M., Nagata Y., Matsuoka Y., Iwata Y., Aochi H., Nitayama A., "Bit cost scalable technology with punch and plug process for ultra high density flash memory." 2007 Symposium on VLSI Technology, Digest of Technical Papers, pp. 14-15., 2007.
[35] Katsumata R., Kito M., Fukuzumi Y., Kido M., Tanaka H., Komori Y., Ishiduki M., Matsunami J., Fujiwara T., Nagata Y., Li Zhang, Iwata Y., Kirisawa R., Aochi H., Nitayama A., "Pipe-shaped BiCS Flash Memory with 16 Stacked Layers and Multi-Level-Cell Operation for Ultra High Density Storage Devices." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 136-137, 2009.
[36] Jaehoon Jang, Han-Soo Kim, Wonseok Cho, Hoosung Cho, Jinho Kim, Sun Il Shim, Younggoan Jang, Jae-Hun Jeong, Byoung-Keun Son, Dong Woo Kim, Kihyun, Jae-Joo Shim, Jin Soo Lim, Kyoung-Hoon Kim, Su Youn Yi, Ju-Young Lim, Dewill Chung, Hui-Chang Moon, Sungmin Hwang, Jong-Wook Lee, Yong-Hoon Son, Chung U-in, Lee, Won-Seong, "Vertical Cell Array using TCAT(Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 192-193, 2009.
[37] Jiyoung Kim, Hong A.J., Min Kim Sung, Song Emil B., Jeung Hun Park, Jeonghee Han, Siyoung Choi, Deahyun Jang, Joo -Tae Moon, Wang K.L., "Novel Vertical-Stacked-Array-Transistor(VSAT) for ultra-high-density and cost-effective NAND Flash memory devices and SSD(Solid State Drive)." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 186-187, 2009.
[38] Wonjoo Kim, Sangmoo Choi, Junghun Sung, Taehee Lee, Chulmin Park, Hyoungsoo Ko, Juhwan Jung, Inkyong Yoo, Yoondong Park, "Multi-Layered Vertical Gate NAND Flash Overcoming Stacking Limit for Terabit Density Storage." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 188-189, 2009.
[39] Hang-Ting Lue, Tzu-Hsuan Hsu, Yi-Hsuan Hsiao, Hong S.P., Wu M.T., Hsu F.H., Lien N.Z., Szu-Yu Wang, Jung-Yu Hsieh, Ling-Wu Yang, Tahone Yang, Kuang-Chao Chen, Kuang-Yeu Hsieh, Chih-Yuan Lu, "A Highly Scalable 8-Layer 3D Vertical-Gate(VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device." 2010 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 131-132. 91, 2010.
[40] Chun-Hsiung Hung, Hang-Ting Lue, Kuo-Pin Chang, Chih-Ping Chen, Yi-Hsuan Hsiao, Shih-Hung Chen, Yen-Hao Shih, Kuang-Yeu Hsieh, Yang, M., Lee, J., Szu-Yu Wang, Tahone Yang, Kuang-Chao Chen, Chih-Yuan Lu, "A Highly Scalable Vertical-Gate(VG) 3D NAND Flash with Robust Program Disturb Immunity Using a Novel PN Diode Decoding Structure" 2011 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 68-69, 2011.
[41] R. Waser, "Resistive non-volatile memory devices ", Microelectronic Engineering, vol. 86, pp. 1925-1928, 2009.
[42] Y. Hirose and H. Hirose, "Polarity-Dependent Memory Switching and Behavior of Ag Dendrite in Ag-Photodoped Amorphous As2S3 Films", Journal of Applied Physics, vol. 47, pp. 2767-2772, 1976.
[43] N. Raghavan, K. L. Pey, W. Liu, X. Wu, X. Li, and M. Bosman, "Evidence for compliance controlled oxygen vacancy and metal filament based resistive switching mechanisms in RRAM", Microelectronic Engineering, vol. 88, pp. 1124-1128, 2011.
[44] Chun-Chieh Lin, Bing-Chung Tu, Chao-Cheng Lin, Chen-Hsi Lin, Tseng Tseung-Yuen, "Resistive switching mechanisms of V-doped SrZrO3 memory films”, IEEE Electron Device Lett. 27(9), 725-727, 2006.
[45] S. Yu, X. Guan, and H.-S. Philip Wong,"On the Stochastic Nature of Resistive Switching in Metal Oxide RRAM:Physical Modeling, Monte Carlo Simulation, and Experimental Characterization" ,IEEE Electron Device Lett. 17.3.1 - 17.3.4,2011.
[46] R. Waser and M. Aono, "Nanoionics-based resistive switching memories", Nat Mater, vol. 6, pp. 833-840, 2007.
[47] C. Rossel, G. l. Meijer, D. Bre’maud, and D. Widmer, “Electrical current distribution across a metal-insulator-metal structure during bistable switching”, App. Phys. Lett. 90, 2892(2001).
[48] L. Ma, J. Liu, S. Pyo, and Y. Yang, “Organic bistable light-emitting devices”, Appl. Phys. Lett. 80, 362(2002).
[49] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells”, Appl. Phys. Lett. 80, 2997(2002).
[50] 劉志益,曾俊元,「電阻式非揮發性記憶體之近期發展」, 電子月刊, vol. 117, pp.182-189, 2005。
[51] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Appl. Phys. Lett. 76, 2749(2000).
[52] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysterestic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett. 85, 4073(2004).
[53] C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, and T. Y. Tseng, “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film”, IEEE Electron Device Lett. 26, 351-353(2005).
[54] Y. Watanabe, J. G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A.Beck, and S. J. Wind, “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, Appl. Phys. Lett. 78, 3738-3740(2001).
[55] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films”, Appl. Phys. Lett. 85, 5655(2004).
[56] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang,“Identification of a determining parameter for resistive switching of TiO2 thin films”, Appl. Phys. Lett. 86, 262907(2005).
[57] K. L. Lin, T. H. Hou, J. Shieh, J. H. Lin, C. T. Chou and Y. J. Lee, “Electrode dependence of filament formation in HfO2 resistive-switching memory,” Appl. Phys. Lett.vol. 109, p. 084104 , 2011.
[58] J. F. Gibbons and W. E. Beadle, “Switching properties of thin NiO films,” Solid-State Electron. 7, 785,1964.
[59] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application”, Nano Letters, Vol.9, 1636(2009).
[60] L. Ma, J. Liu, S. Pyo, and Y. Yang, “Organic bistable light-emitting Devices”, Appl. Phys. Lett. 80, 362(2002).
[61] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells”, Appl. Phys. Lett. 80, 2997(2002).
[62] 張家傑,「有機記憶體(organic memory)」,電子報,2005。
[63] J.-J. Huang et al., Appl. Phys. Lett. 96,262901, 2010.
[64] Kuyyadi P Biju et al, Journal of Physics D: Applied Physics, vol. 43, no. 49, 495104,(2012).
[65] Deok-Hwang Kwon, Kyung Min Kim, Jae Hyuck Jang, Jong Myeong Jeon, Min Hwan Lee, Gun Hwan Kim, Xiang-Shu Li, Gyeong-Su Park, Bora Lee, Seungwu Han, Miyoung Kim & Cheol Seong Hwang, Nature Nanotechnology, vol. 5, 148-153,(2010).
[66] Jiun-Jia Huang, Yi-Ming Tseng, Wun-Cheng Luo, Chung-Wei Hsu, and Tuo-Hung Hou, “One Selector-One Resistor(1S1R) Crossbar Array for High-density Flexible Memory Applications”, Electron Devices Meeting(IEDM), 2011 IEEE International, p. 31.7.1 - 31.7.4, 5-7 Dec. 2011.
[67] H. Wang, Y. H. Tsai, K. C. Lin, M. F. Chang, Y. C. King, C. J. Lin, S. S. Sheu, Y. S. Chen, H. Y. Lee, F. T. Chen, and M. J. Tsai, "Threedimensional 4F2 ReRAM cell with CMOS logic compatible process," in IEDM Tech Dig., 2010, pp. 664–667.
[68] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, "Complementary resistive switches for passive nanocrossbar memories," Nature Mater., vol. 9, pp. 403-406, 2010.
[69] M. J. Lee, Y. Park, B. S. Kang, S. E. Ahn, C. B. Lee, K. Kim, W. Xianyu, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Jim, C. S. Lee, J. B. Park, "2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications," in IEDM Tech. Dig., 2007, pp. 771–774.
[70] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, "TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application," J. Appl. Phys., vol.109, 033712, 2011.
[71] J. J. Huang, Y. M. Tseng, W. C. Luo, C. W. Hsu, and T. H. Hou, “One selector-one resistor(1S1R) crossbar array for high-density flexible memory applications,” International Electron Devices Meeting(IEDM) 2011, Washington, DC, USA, Dec. 5-7, 2011.
[72] 王怡婷,「應用於可撓式軟性電子的高密度電阻式記憶體」,電子月刊第十八卷第九期,2012。
[73] Chung-Wei Hsu, I-Ting Wang, Chun-Li Lo, Ming-Chung Chiang, Wen-Yueh Jang,Chen-Hsi Lin, and Tuo-Hung Hou, “Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory”, VLSI Technology(VLSIT), T166 - T167, 11-13 June 2013.
[74] Chung-Wei Hsu, Yu-Fen Wang, Chia-Chen Wan, I-Ting Wang, Chun-Tse Chou, Wei-Li Lai, Yao-Jen Lee and Tuo-Hung Hou, “Homogeneous barrier modulation of TaOx/TiO2 bilayers for ultra-high endurance three-dimensional storage-class memory”, Nanotechnology, 2014 Apr 25.
[75] Chung-Wei Hsu, Chia-Chen Wan, I-Ting Wang, Mei-Chin Chen, Chun-Li Lo, Yao-Jen Lee, Wen-Yueh Jang, Chen-Hsi Lin, and Tuo-Hung Hou, “3D Vertical TaOx/TiO2 RRAM with over 103 Self-Rectifying Ratio and Sub-μA Operating Current,” Electron Devices Meeting (IEDM), 10.4.1 - 10.4.4, 9-11 Dec. 2013.
[76] F Ferrarese Lupi, T J Giammaria1, M Ceresoli1, G Seguini1, K Sparnacci, D Antonioli, V Gianotti, M Laus and M Perego1, "Rapid thermal processing of self-assembling block copolymer thin films," Nanotechnology, 2013.
指導教授 周正堂、侯拓宏、李耀仁(Cheng-tang Chou Tuo-hung Hou Yao-jen Lee) 審核日期 2014-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明