參考文獻 |
[1]蕭光哲, “下世代動力鋰電池正極材料研究概況” 工業材料雜誌, 第303期, 159-169頁, 2012.
[2]劉偉仁; 郭信良, “鋰離子電池材料最新發展趨勢(上)” 工業材料雜誌, 第302期, 131-137頁, 2012.
[3]SANYO battery comparison, 2007 brochure.
[4]Macworld vol.36, pp.12, 1995.
[5]Tesla電動車起火事故 http://www.techbang.com/posts/15058-31-seconds-of-fire-movie-tesla-lost-1233-billion?related_post=true
[6]C. L. Campion,; W. Li,; B. L. Lucht, “Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries” Journal of The Electrochemical Society, vol.152, pp.A2327-A2334,2005.
[7]W. Li,; C. Campion,; B. L. Lucht,; B. Ravdel,; J. DiCarlo,; K. M. Abrahamb, Journal of The Electrochemical Society, vol.152, pp.A1361-A1365, 2005.
[8]鄭錦淑; 楊長榮; 許榮木, “高安全性鋰電池材料”, 工業材料雜誌, 第275期, 077-082頁, 2009.
[9]M. Armand,; J.-M. Tarascon, “Building better batteries”, Nature, Vol.451, pp.652-657, 2008.
[10]趙信豪, “鋰電池三元系正極材料之添加劑制備及電池性能探討”, 國立中央大學化學系碩士論文, 2012.
[11]鄭錦淑, “鋰電池材料熱分析研究”, 工業材料雜誌, 第264期, pp.118-122, 2008.
[12]Sandia National Laboratories, Fall 2007 ECS Meeting.
[13]陳金銘, 能源材料課程講義
[14]L. X. Yuan,; Z. H. Wang,; W. X. Zhang,; X. L. Hu,; J. T. Chen,; Y. H. Huang,; J. B. Goodenough, “Development and challenges of LiFePO4 cathode material for lithium-ion batteries”, Energy Environ. Sci, vol.4, pp.269–284 ,2011.
[15]Y. Liang,; X. Han,; X. Zhou,; J. Sun,; Y. Zhou, “Significant improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 cathode on volumetric energy density and cycling stability at high rate”, Electrochemistry Communications, vol.9, pp.965-970, 2007.
[16]J. Li,; Z.R. Zhang,; X.J. Guo,; Y. Yang, “The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0 < x ≤ 1) as a cathode material in lithium ion batteries”, Solid State Ionics, vol.177, pp.1509-1516, 2006.
[17]T. Ohzuku,; R. J. Brodd, “An overview of positive-electrode materials for advanced lithium-ion batteries”, Journal of Power Sources, vol.174, pp.449-456, 2007.
[18]A. Hirano,; R. Kanno,; Y. Kawamoto,; Y. Takeda,; K. Yamaura,; M. Takano,; K. Ohyama,; M. Ohashi,; Y. Yamaguchi, “Relationship between non-stoichiometry and physical properties in LiNiO2”, Solid State Ionics, vol.78, pp.123-131, 1995.
[19]A. Yamada,; M. Tanaka, “Jahn-Teller structural phase transition around 280K in LiMn2O4”, Materials Research Bulletin, vol.30, pp.715-721, 1995.
[20]F. Zhou,; K. Kang,; T. Maxisch,; G. Ceder,; D. Morgan, “The electronic structure and band gap of LiFePO4 and LiMnPO4”, Solid State Communications, vol.132, pp.181-186, 2004.
[21]費定國, “鋰離子電池在電動車市場之展望”, 工業材料雜誌, vol.229, pp.141-146, 2006.
[22]M. Gozu,; K. Świerczek,; J. Molenda, “Structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides prepared by a soft chemistry method”, Journal of Power Sources, vol.194, pp.38-44, 2009.
[23]Z. Zhang,; D. Fouchard,; J.R. Rea, “Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells”, Journal of Power Sources, vol.70, pp.16-20, 1998.
[24]D.D. MacNeil,; Z. Lu,; Z. Chen,; J.R. Dahn, “A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes”, Journal of Power Sources, vol.108, pp.8–14, 2002.
[25]T. Ohzuku,; Y. Makimura, “Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries”, Chemistry Letters, vol.7, pp.642, 2001.
[26]X.M. Feng,; X.P. Ai,; H.X. Yang, “A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries”, Electrochemistry Communications, vol.6, pp.1021–1024, 2004.
[27]P.G. Balakrishnan,; R. Ramesh,; T. Prem Kumar, “Safety mechanisms in lithium-ion batteries” Journal of Power Sources, vol.155, pp.401–414 2006.
[28]Y. Huang,; J. Chen,; J. Ni,; H. Zhou,; X. Zhang, “A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2”, Journal of Power Sources, vol.188, pp.538-545, 2009.
[29]Y. Huang,; J. Chen,; F. Cheng,; W. Wan,; W. Liu,; H. Zhou,; X. Zhang, “A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process”, Journal of Power Sources, vol.195, pp.8267-8274, 2010.
[30]S. S. Zhang, “A review on electrolyte additives for lithium-ion batteries”, Journal of Power Sources, vol.162, pp.1379–1394, 2006.
[31]M. L. Lee,; Yu. H. Li,; J. W. Yeh,; H. C. Shih, “Improvement in safety and cycle life of lithium-ion batteries by employing quercetin as an electrolyte additive”, Journal of Power Sources, vol.214, pp.251-257, 2012.
[32]P. G. Pietta, “Flavonoids as Antioxidants”, Journal of Natural Products, vol.63, pp.1035-1042, 2000.
[33]D. Bedner et al., “Fire-resistant epoxy resin compositions containing microparticulated phosphorus fireproofing agent”, US2006/102882 A1, 2006.
[34]H. S. Murase et al., “Flame retardant composition with improved fluidity, flame retardant resin composition and molded products”, US2007/0176154 Al, 2007.
[35]W. Li,; B.L. Lucht,; “Lithium-Ion Batteries: Thermal Reactions of Electrolyte with the Surface of Metal Oxide Cathode Particles “, Journal of The Electrochemical Society, vol.153, pp.A1617-A1625, 2006.
[36]A. Xiao,; W. Li,; B.L. Lucht, “Thermal reactions of mesocarbon microbead (MCMB) particles in LiPF6-based electrolyte”, Journal of Power Sources, vol.162, pp.1282–1288, 2006.
[37]M.Q. Xu,; L.S. Hao,; Y.L. Liu,; W.S. Li,; L.D. Xing,; B. Li,; “Experimental and Theoretical Investigations of Dimethylacetamide (DMAc) as Electrolyte Stabilizing Additive for Lithium Ion Batteries”, Journal Physical Chemistry C, vol.115, pp.6085–6094, 2011.
[38]J. Hu,; Z. Jin,; H. Zhong,; H. Zhan,; Y. Zhou,; Z. Li, “A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries”, Journal of Power Sources, vol.197, pp.297–300, 2012.
[39]M. Gali´nski,; A. Lewandowski,; I. St˛epniak, “Ionic liquids as electrolytes”, Electrochimica Acta, vol.51, pp.5567–5580, 2006.
[40]J.A. Choia,; Y. K. Sunb,; E. G. Shimc,; B. Scrosatid,; D. W. Kima, “Effect of 1-butyl-1-methylpyrrolidinium hexafluorophosphate as a flame-retarding additive on the cycling performance and thermal properties of lithium-ion batteries”, Electrochimica Acta, vol.56, pp.10179–10184, 2011.
[41]K. S. Park,; D. Im,; A. Benayad,; A. Dylla,; K. J. Stevenson,; J. B. Goodenough, “LiFeO2-Incorporated Li2MoO3 as a Cathode Additive for Lithium-Ion Battery Safety”, Chem. Mater., vol.24, pp.2673−2683, 2012.
[42]F. M. Wang,; S. C. Lo,; C. S. Cheng,; J. H. Chen,; B. J. Hwang,; H. C. Wu, “Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery”, Journal of Membrane Science, vol.368, pp.165-170, 2011.
[43]J. P. Pan,; G. Y. Shiau,; S. S. Lin,; K. M. Chen,; “Effect of barbituric acid on the self-polymerization reaction of bismaleimides”, Journal of Applied Polymer Science, vol.45, pp.103-109, 1992.
[44]C. H. Doh,; D. H. Kim,; H. S. Kim,; H. M. Shin,; Y. D. Jeong,; S. I. Moon,; B. S. Jin,; S. W. Eom,; H. S. Kim,; K. W. Kim,; D. H. Oh,; A. Veluchamy, “Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test”, Journal of Power Sources, vol.175, pp.881-885, 2008.
[45]S. I. Tobishima,; K. Takei,; Y. Sakurai,; J. I. Yamaki, “Lithium ion cell safety”, Journal of Power Sources, vol.90, pp.188-195, 2000.
[46]Y. Ein-Eli,; S.F. McDevitt,; D. Aurbach,; B. Markovsky,; A. Schecheter,; “Methyl Propyl Carbonate: A Promising Single Solvent for Li-Ion Battery Electrolytes”, Journal of The Electrochemical Society, vol.144, pp.L180-L184, 1997.
[47]D. Aurbach,; Y. Ein-Eli, “The Study of Li-Graphite Intercalation Processes in Several Electrolyte Systems Using In Situ X-Ray Diffraction”, Journal of The Electrochemical Society, vol.142 pp.1746-1752, 1995.
[48]葉定儒; 陳金銘; 廖世傑 “鋰電池機能性添加劑研究” 工業材料雜誌, 第290期, pp.78-84, 2011.
[49]D. Bar-Tow,; E. Peled,; L. Burstein, “A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries”, Journal of The Electrochemical Society, vol.146, pp.824-832, 1999.
[50]G. Li,; H. Li,; Y. Mo,; L. Chen,; X. Huang, “Further identification to the SEI film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS)”, Journal of Power Sources, vol.104, pp.190-194, 2002.
[51]S. S. Zhang,; K. Xu,; T. R. Jow, “EIS study on the formation of solid electrolyte interface in Li-ion battery” Electrochimica Acta, vol.51, pp.1636-1640, 2006.
[52]S. Matsuta,; T. Asada,; K. Kitaura, “Vibrational Assignments of Lithium Alkyl Carbonate and Lithium Alkoxide in the Infrared Spectra An Ab Initio MO Study”, Journal of The Electrochemical Society, vol.147 pp.1695-1702, 2000.
[53]T. Eriksson,; A. M. Andersson,; C. Gejke,; T. Gustafsson,; J. O. Thomas, “Influence of Temperature on the Interface Chemistry of LixMn2O4 Electrodes”, Langmuir, vol.18, pp.3609-3619, 2002.
[54]D. Aurbach, “Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries”, Journal of Power Sources, vol.89, pp.206–218, 2000.
[55]D. E. Arreaga-Salas,; A. K. Sra,; K. Roodenko,; Y. J. Chabal,; C. L. Hinkle, “Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries”, Journal Physical Chemistry C, vol.116, pp.9072−9077, 2012.
[56]F. M. Wang,; H. M. Cheng,; H. C. Wu,; S. Y. Chu,; C. S. Cheng,; C. R. Yang, “Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries”, Electrochimica Acta, vol.54, pp.3344-3351, 2009.
[57]S. Leroy,; H. Martinez,; R. Dedryvère,; D. Lemordant,; D. Gonbeau, “Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study”, Applied Surface Science, vol.253, pp.4895-4905, 2007.
[58]T. Kubota,; M. Ihara,; S. Katayama,; H. Nakai,; J. Ichikawa, “1,1-Difluoro-1-alkenes as new electrolyte additives for lithium ion batteries”, Journal of Power Sources, vol.207, pp.141– 149, 2012.
[59]M. Yokota,; D. Fujita,; J. Ichikawa, ” Activation of 1,1-Difluoro-1-alkenes with a Transition-Metal Complex: Palladium(II)-Catalyzed Friedel)Crafts-Type Cyclization of 4,4-(Difluorohomoallyl)arenes”, Organic Letters, vol.9, pp.4639-4642, 2007.
[60]D. Chalasania,; J. Li,; N. M. Jackson,; M. Payne,; B. L. Lucht, “Methylene ethylene carbonate: Novel additive to improve the high temperature performance of lithium ion batteries”, Journal of Power Sources, vol.208 pp.67–73, 2012.
[61]黨苓之, “高性能鋰離子電池的製備”, 國立中央大學化學系碩士論文, 2010.
[62]F.E. Yu,; J.M Hsu,; J.P. Pan,; T.H. Wang,; C.S. Chern, “Kinetics of Michael Addition Polymerizations of N,N’-Bismaleimide-4,4’-Diphenylmethane With Barbituric Acid, Polymer Engineering and Science, Vol.53, pp204-211, 2013.
[63]孫世勇, “應用核磁共振技術觀察雙馬來亞醯胺和巴比妥酸在甲基吡咯烷酮溶劑下聚合反應的反應機制與動力學行為” 中原大學化學系碩士論文, 2008.
[64]莊全超; 徐守冬; 邱祥雲; 崔永麗; 方亮; 孫世剛, “鋰離子電池的電化學阻抗譜分析”, China Academic Journal Electronic Publishing House, Vol.22, No.6, 2010.
[65]M. Takahashi,; S.-I. Tobishima,; K. Takei,; Y. Sakurai, “Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries”, Solid State Ionics, vol.148, pp.283-289, 2002.
[66]陳昱光, “鋰離子電池陰極材料熱穩定性探討”, 國立中央大學化學系碩士論文, 2008.
|