博碩士論文 992204006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.119.253.184
姓名 林松賢(Song-sian Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 轉錄因子 FoxO6 在 3T3-L1 脂肪細胞分化中蛋白質表現量的變化
(changes in the protein expression of the forkhead transcription factor FoxO6 during differentiation of 3T3-L1 fat cells)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Forkhead box class O (簡稱 FoxO) 轉錄因子成員包含 FoxO1 、FoxO3 、 FoxO4 和 FoxO6 。已有很多文獻分別指出 FoxO 各成員在細胞中,調控著多種不同的功能,包括分化、能量代謝、細胞的修復與細胞週期等。在本論文中我們以地塞米松、胰島素及 1-甲基-3-異丁基黃嘌呤為分化劑,將3T3-L1前脂肪細胞分化成脂肪細胞的系統,探討該細胞分化過程中 FoxO6 蛋白質表現量的變化,在這為期十四天的分化過程中,我們發現其蛋白質表現量上升了一倍,並且在細胞質與細胞核中,觀察到其表現量分別上升了 0.5 倍與 11 倍。這些數據顯示 FoxO6 會隨著脂肪細胞分化的情況而改變其蛋白質表現。而由於有文獻指出綠茶兒茶素,特別是其中的表沒食子酸酯型唲茶素酸酯(簡稱 EGCG),能夠減少分化所造成的 FoxO1 磷酸化,並且增加其轉錄活性,因此在這裡我們想探討是否在分化期間 EGCG 也會改變 FoxO6 或是其他 FoxO 成員蛋白質的表現量。我們發現以 5 µM 濃度的 EGCG 處理,會增加脂肪分化中第二天、第六天與第十二天時,細胞內 FoxO6 蛋白質的量。反之,以 25 µM 濃度的 EGCG 處理,則會傾向於抑制分化中第八天與第十天時,細胞內 FoxO6 蛋白質的量。這些結果證明 EGCG 對 FoxO6 蛋白質表達的影響,會與處理劑量及細胞分化階段相關。不過,我們也發現到以 5 µM 濃度的 EGCG 處理,雖然在分化中第十二天時,亦會增加 FoxO1 的蛋白表現量,但卻會減少 FoxO1 蛋白在分化中第二天時的表現量,並對第六天時的 FoxO1 蛋白表現量不造成影響。而在 FoxO3 蛋白方面,以 5 µM 濃度的 EGCG 處理,雖然在分化中第二天與第十二天時,也會增加其表現量,但卻會減少其在分化中第六天時的表現量。而以 25 µM 濃度的 EGCG 處理,則分別減少分化中第八天時 FoxO1 與分化中第十天 FoxO3 的蛋白表現量,卻對第十天時 FoxO1 與第八天時 FoxO3 的蛋白表現量沒有影響。這些實驗結果證明 EGCG 對不同種 FoxO 成員的影響是具有選擇性的,並且這種選擇性的影響會隨著細胞分化階段的不同以及 EGCG 處理的劑量和時間的不同而變。
摘要(英) Forkhead box class O (FoxO) transcription factors contained FoxO1, FoxO3, FoxO4, and FoxO6, and they have been respectively reported to regulate diverse cellular functions, including differentiation, energy metabolism, cell survival, and cell cycle. In this study using the preadipocyte-adipocyte differentiation system of 3T3-L1 cells induced by dexamethasone, insulin and 1-methyl-3-isobutylxanthine, we examined changes in the FoxO6 protein expression during the adipogenic process. We found that FoxO6 increased its protein levels by about 100% during the 14-day period of fat cell differentiation. Also, levels of cytosolic and nuclear FoxO6 were increased by 50% and 1100%, repectively. This suggests the differentiation-dependent protein expression of FoxO6. Because green tea catechins, especially (-)-epigallocatechin gallate(EGCG), were reported to reduce FoxO1 phosphorylation and increase its transcriptional activity, we studied herein whether EGCG altered protein levels of FoxO6 and other FoxO members during adipocyte differentiation. EGCG at 5 µM tended to increase FoxO6 protein levels at Day 2, 6, and 12 differentiating cells, while, at 25 µM, it tended to decrease FoxO6 protein expression at Day 8 and 10 differentiating cells. This suggests the dose- and differentiation stage-dependent effect of EGCG on FoxO6 protein expression. However, treatment with 5 µM EGCG decreased FoxO1 levels at Day 2 cells, unaltered FoxO1 levels at Day 6 cells, and increased FoxO1 at Day 12 cells, respectively. EGCG at 5 µM increased FoxO3 levels at Day 2 cells, decreased FoxO3 levels at Day 6 cells, and increased FoxO3 levels at Day 12 cells. Treatment with 25 µM EGCG decreased FoxO1 levels at Day 8 cells and unaltered FoxO1 levels at Day 10 cells, while it unaltered FoxO3 levels at Day 8 cells and decreased FoxO3 protein expression at Day 10 cells. These data suggest that EGCG selectively affects particular types of FoxO family members and the effect varies with the duration and dosage of EGCG treatment and with different differentiation stages of fat cells.
關鍵字(中) ★ FoxO6
★ 沒食子酸酯型唲茶素酸酯
★ 脂肪細胞分化
關鍵字(英) ★ FoxO6
★ EGCG
★ 3T3-L1
★ adipocyte differentiation
論文目次 英文摘要 .................................................................i
中文摘要 ................................................................ii
誌謝 ...................................................................iii
目錄 ....................................................................iv
縮寫與全名對照 ..........................................................vi
一. 緒論 .................................................................1
I. 脂肪組織及細胞分化 ............................................1
II. FoxO 轉錄因子 ..................................................3
III. 綠茶表沒食子酸酯型唲茶素酸酯....................................5
IV. 研究動機與目的 .................................................7
二. 實驗材料與方法 .......................................................8
I. 實驗材料 .......................................................8
II. 實驗方法 .......................................................8
三. 結果 ................................................................12
I. 前脂肪細胞分化成脂肪細胞之建立 ................................12
II. FoxO6蛋白質表現量會隨著分化時間而上升 .........................12
III. FoxO6蛋白質在核內外分布情形會隨著分化過程改變 .................12
IV. EGCG 在脂肪細胞分化過程中對 FoxO1 、 3 和 6 蛋白質表達的影響...13
V. EGCG 在脂肪細胞分化過程中對細胞核與細胞質內 FoxO3 及 FoxO6
蛋白質表達的影響...............................................14
四. 討論 ................................................................17
I. 新的分化模型能確保分化正確進行 ................................17
II. 分化過程中 FoxO6 的表現與調控 .................................17
III. EGCG 對分化過程中FoxO表達的影響 ...............................17
IV. EGCG 對分化過程中細胞核與細胞質內 FoxO3 和 FoxO6 表達的影響....18
V. EGCG 透過 FoxO 對脂肪分化的影響................................19
VI. 未來可能進行的實驗 ............................................19
五. 結論 ................................................................21
六. 參考文獻 ............................................................22
七. 表目錄 ..............................................................32
八. 圖目錄 ..............................................................36
九. 附錄 ................................................................51
參考文獻 1. Barthel A, Schmoll D and Unterman TG. (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16:183-189.

2. Belguise K, Guo S and Sonenshein GE. (2007) Activation of FOXO3a by the green tea polyphenol epigallocatechin-3-gallate induces estrogen receptor alpha expression reversing invasive phenotype of breast cancer cells. Cancer Res 67:5763-5670.

3. Biggs WH 3rd, Cavenee WK and Arden KC. (2001) Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. Mamm Genome 12:416-425.

4. Birkenkamp KU and Coffer PJ. (2003) FOXO transcription factors as regulators of immune homeostasis: molecules to die for? J Immunol 171:1623-1629.

5. Cannon B, Hedin A and Nedergaard J. (1982) Exclusive occurrence of thermogenin antigen in brown adipose tissue. FEBS Lett 150:129-132.

6. Cannon B and Nedergaard J. (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277-359.

7. Chen YJ, Chen CC, Li TK, Wang PH, Liu LR, Chang FY, Wang YC, Yu YH, Lin SP, Mersmann HJ and Ding ST. (2012) Docosahexaenoic acid suppresses the expression of FoxO and its target genes. J Nutr Biochem 23:1609-1616.

8. Dulloo A, G and Duret C. (1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h expenditure and fat oxidation in humans. Am. J Clin Nutr 70:1040-1045.

9. Elberg G, Gimble JM and Tsai SY. (2000) Modulation of the murine peroxisome proliferator-activated receptor γ2 promoter activity by CCAAT/enhancer-binding proteins. J Biol Chem 275:27815-27822.

10. Gregoire FM, Smas CM and Sul HS. (1998) Understanding adipocyte differentiation. Physiol Rev 78:783-809.

11. Frayn KN. (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45:1201-1210.

12. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K and Ashida H. (2004) Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci Biotechnol Biochem 68:2353-2359.

13. Greer EL and Brunet A. (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410-7425.

14. Gregoire FM, Smas CM and Sul HS. (1998) Understanding adipocyte differentiation. Physiol Rev 78:783-809.

15. Han J, Hajjar DP, Zhou X, Gotto AM, Jr and Nicholson AC. (2002) Regulation of peroxisome proliferator-activated recceptor-γ-mediated gene expression. J Biol Chem 277:23582-23586.

16. Higuchi M, Dusting GJ, Peshavariya H, Jiang F, Hsiao ST, Chan EC and Liu GS. (2013) Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev 22:878-888

17. Hotamisligil GS, Shargill NS and Spiegelman BM. (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87-91.

18. Hsieh CF, Tsuei YW, Liu CW, Kao CC, Shih LJ, Ho LT, Wu LY, Wu CP, Tsai PH, Chang HH, Ku HC and Kao YH. (2010) Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Med 76:1694-1698.

19. Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ and Kao YH.(2005) Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol 288:C1094-1108.

20. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J and Park OJ. (2005) Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338:694-699.

21. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF and Smidt MP. (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278:35959-35967

22. Kao YH, Hiipakka RA and Liao S. (2000a) Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980-987.

23. Kao YH, Hiipakka RA and Liao S. (2000b) Modulation of obesity by a green tea catechin. Am J Clin Nutr 72:1232-1234.

24. Kao YH, Chang HH, Lee MJ and Chen CL. (2006) Tea, obesity, and diabetes. Mol Nutr Food Res 50:188-210.

25. Keay S and Grossberg SE. (1980) Interferon inhibits the conversion of 3T3-L1 mouse fibroblasts into adipocytes. Proc Natl Acad Sci USA 77:4099-4103.

26. Kim DH, Zhang T, Lee S, Calabuig-Navarro V, Yamauchi J, Piccirillo A, Fan Y, Uppala R, Goetzman E and Dong HH. (2014) FoxO6 integrates insulin signaling with MTP for regulating VLDL production in the liver. Endocrinology 155:1255-1267.

27. Kim H, Hiraishi A, Tsuchiya K and Sakamoto K. (2010) (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology 62:245-255.

28. Kim S, Kim Y, Lee J and Chung J. (2010) Regulation of FOXO1 by TAK1-Nemo-like kinase pathway. J Biol Chem 285:8122-8129.

29. Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW and Kao YH. (2009) Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am J Physiol Cell Physiol 297:121–132.

30. Lea-Currie YR, Monroe D and McIntosh MK. (1999) Dehydroepiandrosterone and related steroids alter 3T3-L1 preadipocyte proliferation and differentiation. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123:17-25.

31. Lehmann OJ, Sowden JC, Carlsson P, Jordan T and Bhattacharya SS. (2003) Fox′s in development and disease. Trends in Genetics 19:339-344.

32. Lin J, Della-Fera MA and Baile CA. (2005) Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes Res 13:982-990.

33. Liu CW, Yang SY, Lin CK, Liu HS, Ho LT, Wu LY, Lee MJ, Ku HC, Chang HH, Huang RN and Kao YH. (2014) The forkhead transcription factor FOXO1 stimulates the expression of the adipocyte resistin gene. Gen Comp Endocrinol 196:41-51.

34. Matsuzaki H, Daitoku H, Hatta M, Tanaka K and Fukamizu A. (2003) Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA 100:11285-11290.

35. Mandrup S, Loftus TM, MacDougald OA, Kuhajda FP and Lane MD. (1997) Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes. Proc Natl Acad Sci USA 94:4300-4305.

36. Moon HS, Chung CS, Lee HG, Kim TG, Choi YJ and Cho CS. (2007) Inhibitory effect of (-)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells. Obesity 15:2571-2582.

37. Morré DJ, Bridge A, Wu LY and Morré DM. (2000) Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture. Biochem Pharmacol 60:937-946.

38. Munekata K and Sakamoto K. (2009) Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cell Dev Biol Anim 45:642-651.

39. Murase T, Misawa K, Haramizu S and Hase T. (2009) Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol 78:78-84.

40. Nakae J, Kitamura T, Kitamura Y, Biggs WH. 3rd, Arden KC and Accili D. (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4:119–129.

41. Obsil T and Obsilova V. (2008) Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27:2263-2275.

42. Oellerich MF and Potente M. (2012) FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ Res 110:1238-1251.

43. Reusch JE, Colton LA and Klemm DJ. (2000) CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol 20:1008-1020.

44. Reznikoff CA, Brankow DW and Heidelberger C. (1973) Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res 33:3231-3238.

45. Ricquier D, Casteilla L and Bouillaud F. (1991) Molecular studies of the uncoupling protein. FASEB J 5:2237-2242.

46. Sabu MC, Smitha K and Kuttan R. (2002) Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 83:109-116.

47. Sakurai N, Mochizuki K, Kameji H, Shimada M and Goda T. (2009) (-)-Epigallocatechin gallate enhances the expression of genes related to insulin sensitivity and adipocyte differentiation in 3T3-L1 adipocytes at an early stage of differentiation. Nutrition 25:1047-1056.

48. Smith PJ, Wise LS, Berkowitz R, Wan C and Rubin CS. (1998) Insulin-like growth factor-1 is a essential regulator of differentiation of 3T3-L1 adipocyte. J Biol Chem 263:9402-9408.

49. Student AK, Hsu RYa and Lane MD. (1980) Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem. 255:4745-4750.

50. Suganuma M, Okabe S, Sueoka N, Sueoka E, Matsuyama S, Imai K, Nakachi K and Fujiki H. (1999) Green tea and cancer chemoprevention. Mutat Res 428:339-344.

51. Sung HY, Hong CG, Suh YS, Cho HC, Park JH, Bae JH, Park WK, Han J and Song DK. (2010) Role of (-)-epigallocatechin-3-gallate in cell viability, lipogenesis, and retinol-binding protein 4 expression in adipocytes. Naunyn-Schmied Arch Pharmacol 382:303-310.

52. Suryawan A, Swanson LV and Hu CY. (1997) Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. J Anim Sci 75:105-111.

53. Tang QQ, Otto TC and Lane MD. (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA 101:9607-9611.

54. Tamura T, Nakatani K and Yau KW. (1991) Calcium feedback and sensitivity regulation in primate rods. J Gen Physiol 98:95-130.

55. Thielecke F and Boschmann M. (2009) The potential role of green tea catechins in the prevention of the metabolic syndrome - a review. Phytochemistry 70:11-24.

56. Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM and Hotamisligil GS. (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290:134-138.

57. Uchida S, Ozaki M, Suzuki K and Shikita M. (1992) Radioprotective effects of (-)-epigallocatechin 3-O-gallate (green-tea tannin) in mice. Life Sci 50:147-152.

58. van der Heide LP, Jacobs FM, Burbach JP, Hoekman MF and Smidt MP. (2005) FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. Biochem J 391:623-629.

59. van der Horst A and Burgering BM. (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8:440-450.

60. Wabitsch M, Hauner H, Heinze E and Teller WM. (1995) The role of growth hormone/insulin-like growth factors in adipocyte differentiation. Metabolism 44:45-9.

61. Wang SH, Wang WJ, Wang XF and Chen WH. (2004) Effect of Astragalus polysaccharides and berberine on carbohydrate metabolism and cell differentiation in 3T3-L1 adipocytes. Zhongguo Zhong Xi Yi Jie He Za Zhi 24:926-928.

62. Wang SH, Wang WJ, Wang XF and Chen WH. (2004) Effects of salidroside on carbohydrate metabolism and differentiation of 3T3-L1 adipocytes. Zhong Xi Yi Jie He Xue Bao 2:193-195.

63. Watanabe J and Niki R. (1998) Isolation and identification of acetyl-coA carboxylase inhibitors from green tea. Biosci Biophys Biochem 62:532-534.

64. Weidinger C1, Krause K, Klagge A, Karger S and Fuhrer D. (2008) Forkhead box-O transcription factor: critical conductors of cancer′s fate. Endocr Relat Cancer 15:917-929.

65. Wolfram S, Raederstorff D, Wang Y, Teixeira SR, Elste V and Weber P. (2005) TEAVIGO (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Ann Nutr Metab 49:54-63.

66. Yu S, Matsusue K, Kashireddy P, Cao WQ, Yeldandi V, Yeldandi AV, Rao M S, Gonzalez FJ and Reddy JK. (2002) Adipocyte-specific gene expression and adipogenic Steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression. J Biol Chem 278: 498-505.

67. Zhang F, Chen Y, Heiman M and Dimarchi R. (2005) Leptin: structure, function and biology. Vitam Horm 71:345-372.

68. Zhang T, Yang D, Fan Y, Xie P and Li H. (2009) Epigallocatechin-3-gallate enhances ischemia/reperfusion-induced apoptosis in human umbilical vein endothelial cells via AKT and MAPK pathways. Apoptosis 14:1245-1254.

69. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L and Friedman JM. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425-432.

70. Zhu J, Mounzih K, Chehab EF, Mitro N, Saez E and Chehab FF. (2010) Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake. J Lipid Res 51:1312-1324.
指導教授 高永旭(Yung-hsi Kao) 審核日期 2014-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明