博碩士論文 101324014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.216.32.116
姓名 丁仁傑(Jen-Chieh Ting)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電場對於複合奈米絲進行原位基因傳送之影響
(The effects of electric field on in situ gene delivery using composite electrospun nanofiber)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維
★ 利用寡聚精胺酸促進去氧寡核苷酸輸送★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞
★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送★ Indolicidin之色胺酸殘基對於轉染效率的影響
★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響★ 搭建可提供電刺激與機械刺激之生物反應器
★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體★ 開發促進傷口癒合之複合敷料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,將褐藻酸鈉電紡絲製備於聚吡咯表面,用以吸附以聚乙烯亞胺包覆的DNA奈米粒子。藉由外加電場的輔助使帶正電奈米粒子往位於陰極的褐藻酸鈉絲泳動。結果證明有通電的組別粒子吸附量有顯著增加,但是在不同電壓下粒子吸附量則無明顯差異。測重實驗證實褐藻酸鈉絲中交聯的鈣離子會在電場作用下游離出並增加褐藻酸鈉絲的降解速率,因此推測電場處理造成褐藻酸鈉絲數量減少會影響到粒子的吸附。為了將此系統應用於原位轉染並彌補褐藻酸鈉生物適合性不佳的問題,我們將此系統在支架中加入聚己內酯纖維。複合絲在電場處理下其重量損耗會加速,且與所施加的電壓成正相關,以接觸角來測定複合纖維的親疏水性及FTIR測定複合纖維中官能基的特徵峰,證實所降解的成分為親水性的褐藻酸鈉。最後我們將電場處理過的複合絲植入HEK293T細胞進行原位轉染實驗,顯示相較於未通電的組別,電場可以促進原位轉染,且轉染的效率會隨著電壓增加而提升,同時由於電壓越大,褐藻酸鈉降解越多,聚己內酯絲的比例上升,進而促進細胞的貼附、活性與增生速率。因此本研究結果顯示利用電場輔助確實有利於基因在支架上的裝載量,並可以調控材料的降解速率以改變複合纖維的比例,進而達到兼顧促進基因傳送與改善生物適合性的目的。
摘要(英) In this study, alginate was electrospun onto polypyrrole surface for polyethyleneimine (PEI) encapsulated DNA nanoparticle adsorption. By treating by an external electric field, positive charged nanoparticles were guided to contact cathodic alginate nanofibers. Although the electric field significantly increased the adsorption of nanoparticles, which did not increase with increasing voltages. The weight experiments demonstrated that the degradation of alginate was promoted under the electric field, which should be relative to the movement of calcium ions within the alginates and thus the structure was destabilized. It also explained that the increasing electric fields may also harmful to the nanoparticle adsorption due to the decrease of alginate fibers. To apply this system for in situ transfection, polycaprolactone (PCL) was coelectrospun with alginate to promote the biocompatibility. After electric field treatment, the loss of composite nanofiber increased with increasing voltages. The contact angle and Fourier-transform infrared spectrometry (FTIR) were applied to investigate the hydrophobicity and functional groups of composite nanofibers, respectively. These results indicated that the loss of composite nanofibers were mainly due to the degradation of alginate fibers. Finally, DNA/PEI nanoparticles were loaded composite nanofibers with electric field treatment and HEK293T cells were seeded onto the fibers for in situ transfection. Compared to the control group, electric fields greatly improve the transfection efficiency which increased with increasing voltages. In addition, higher voltages induced more degradation of alginate nanofibers, which rose the ratio of PCL within composite nanofibers that the cell adhesion, viability, and proliferation were thus improved. Therefore, the use of electric field indeed facilitated the load of gene onto scaffolds. Additionally, it can control the degradation rates to regulate the constitute of composite nanofibers. These properties suggested that our developed scaffold systems can not only provide suitable environment for cell ingrowth, but also be efficient carriers to regulate drug delivery.
關鍵字(中) ★ 電紡絲
★ 奈米粒子
★ 電場
關鍵字(英) ★ Electrospinning
★ Nanoparticles
★ Electric field
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
緒論1
1-1 背景 1
1-2 實驗目的 4
第二章 文獻回顧 6
2-1 組織工程 6
2-2 生物可降解性材料用於組織工程 8
2-3 電紡絲應用於組織工程 11
2-3-1 電紡絲原理 11
2-3-2 褐藻酸鈉製備電紡絲介紹 14
2-3-3 聚己內酯製備電紡絲介紹 16
2-4 基因治療 18
2-4-1 基因治療介紹 18
2-4-2 基因載體—正電高分子聚乙烯亞胺 20
2-4-3 電紡絲應用於基因治療 24
2-5 導電高分子聚吡咯介紹 27
2-6 電吸附應用於組織工程 28
2-7 電刺激對於褐藻酸鈉之影響 35
第三章 材料與方法 38
3-1 實驗藥品 38
3-2 實驗儀器 40
3-3 實驗方法 43
3-3-1 電紡材料製備 43
3-3-2 導電高分子Polypyrrole之合成 45
3-3-3 纖維表面分析實驗 45
3-3-4 粒子通電吸附定量實驗 49
3-3-5 生物實驗 50
第四章 結果與討論 55
4-1 電壓對於奈米粒子吸附的影響 55
4-1-1 通電時間對於奈米粒子的吸附量 55
4-1-2 不同電壓對於奈米粒子吸附量 56
4-2 電壓對於纖維的影響 61
4-2-1 通電後褐藻酸鈉纖維之型態 61
4-2-2 通電後褐藻酸鈉纖維之測重分析 61
4-2-3 通電後混紡纖維之型態 65
4-2-4 通電後混紡纖維之測重分析 69
4-3 混紡纖維降解之表面測定 71
4-3-1 接觸角測定 71
4-3-2 FTIR-ATR測定 76
4-4 生物實驗 78
4-4-1 不同電壓與HEK293T細胞之轉染 78
4-4-2 複合纖維施加不同電壓後之生物適合性 81
第五章 結論 84
第六章 參考資料 86
參考文獻 1. 李宣書, 淺談組織工程. 物理雙月刊, 2001. 24(3): p. 431-435.
2. 徐善慧, 組織工程. 科學發展, 2002(356): p. 4-9.
3. Yu, C.-C., et al., Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Materials Letters, 2013. 93: p. 133-136.
4. Nie, H. and C.-H. Wang, Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Journal of Controlled Release, 2007. 120(1–2): p. 111-121.
5. Zomer Volpato, F., et al., Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomaterialia, 2012. 8(4): p. 1551-1559.
6. Choi, J.S., K.W. Leong, and H.S. Yoo, In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials, 2008. 29(5): p. 587-596.
7. Mottaghitalab, F., et al., Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor. Carbohydrate Polymers, 2011. 86(2): p. 526-535.
8. Zhang, Y., et al., Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 2008. 29(32): p. 4314-4322.
9. Schipper, N.G.M., et al., Chitosans as absorption enhancers of poorly absorbable drugs: 3: Influence of mucus on absorption enhancement. European Journal of Pharmaceutical Sciences, 1999. 8(4): p. 335-343.
10. Hai-Sheng Wang, G.-D.F., Xin-Song Li, Functional Polymeric Nanofibers from Electrospinning. Recent Patents on Nanotechnology, 2009. 3: p. 21-31.
11. Nakano, K., et al., Formulation of Nanoparticle-Eluting Stents by a Cationic Electrodeposition Coating TechnologyEfficient Nano-Drug Delivery via Bioabsorbable Polymeric Nanoparticle-Eluting Stents in Porcine Coronary Arteries. JACC: Cardiovascular Interventions, 2009. 2(4): p. 277-283.
12. 胡哲誠, 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染. 國立中央大學碩士論文, 2013.
13. 徐名瑩, 電泳晶片中帶電離子之運動現象. 儀科中心簡訊, 1998. 87.
14. Park, I.-S., et al., Visualization of the cation migration in ionic polymer-metal composite under an electric field. Applied Physics Letters, 2010. 96(4).
15. Butler, D.L., S.A. Goldstein, and F. Guilak, Functional Tissue Engineering: The Role of Biomechanics. Journal of Biomechanical Engineering, 2000. 122(6): p. 570-575.
16. Li, W.-J., et al., Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 2002. 60(4): p. 613-621.
17. Dvir, T., et al., Nanotechnological strategies for engineering complex tissues. Nat Nano, 2011. 6(1): p. 13-22.
18. Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chemical reviews, 2001. 101(7): p. 1869-79.
19. Lee, K.Y. and D.J. Mooney*, Hydrogels for Tissue Engineering. Chemical reviews, 2001. 101: p. 1869-1879.
20. Yoshimoto, H., et al., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 2003. 24(12): p. 2077-2082.
21. Hu, W.W., et al., Bone Regeneration in Defects Compromised by Radiotherapy. Journal of Dental Research, 2010. 89(1): p. 77-81.
22. Gupta, B.S., et al., Electrospun Core-Sheath Fibers for Soft Tissue Engineering National Textile Center Annual Report, 2006.
23. Lee, K.Y., Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density. Macromolecules, 2000. 33: p. 4291-4294.
24. Ziabari, M., V. Mottaghitalab, and A.K. Haghi, Application of direct tracking method for measuring electrospun nanofiber diameter. Brazilian Journal of Chemical Engineering, 2009. 26: p. 53-62.
25. Taylor, G., Disintegration of Water Drops in an Electric Field. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1964. 280(1382): p. 383-397.
26. FORMHALS, A., Process and apparatus for preparing artificial threads. 1934. US Patent 1.
27. FORMHALS, A., Method and apparatus for spinnin. US Patent 1. 1944.
28. Doshi, J. and D.H. Reneker, Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 1995. 35(2–3): p. 151-160.
29. Nie, H., et al., Effects of Chain Conformation and Entanglement on the Electrospinning of Pure Alginate. Biomacromolecules, 2008. 9(5): p. 1362-1365.
30. Lu, J.-W., et al., Electrospinning of sodium alginate with poly(ethylene oxide). Polymer, 2006. 47(23): p. 8026-8031.
31. Lee, Y.J., et al., Preparation of atactic poly(vinyl alcohol)/sodium alginate blend nanowebs by electrospinning. Journal of Applied Polymer Science, 2007. 106(2): p. 1337-1342.
32. Bajpai, S.K. and S. Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers, 2004. 59(2): p. 129-140.
33. Sajesh, K.M., et al., Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 2013. 62(0): p. 465-471.
34. Wang, C.-C., et al., A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials, 2011. 32(29): p. 7118-7126.
35. RV, I. and M. AD, Proteoglycans of the extracellular environment clues from the gene and protein side offer novel perspectives in molecular diversity and function. The FASEB Journal, 1996. 10: p. 598-614.
36. Gombotz, W.R. and S. Wee, Protein release from alginate matrices. Advanced Drug Delivery Reviews, 1998. 31(3): p. 267-285.
37. Grøndahl, L., G. Lawrie, and A. Jejurikar, 9 - Alginate-based drug delivery devices, in Biointegration of Medical Implant Materials, C.P. Sharma, Editor. 2010, Woodhead Publishing. p. 236-266.
38. Veronovski, A., Ž. Knez, and Z. Novak, Preparation of multi-membrane alginate aerogels used for drug delivery. The Journal of Supercritical Fluids, 2013. 79: p. 209-215.
39. Li, W., et al., Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition. Carbohydrate Polymers, 2013. 92(2): p. 2232-2238.
40. Alborzi, S., L.-T. Lim, and Y. Kakuda, Release of folic acid from sodium alginate-pectin-poly(ethylene oxide) electrospun fibers under in vitro conditions. LWT - Food Science and Technology, 2014. 59(1): p. 383-388.
41. Shalumon, K.T., et al., Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. International Journal of Biological Macromolecules, 2011. 49(3): p. 247-254.
42. Cage, C., A Quick-Prototyping Material — No Ovens Required. Toolmonger, 2007.
43. Labet, M. and W. Thielemans, Synthesis of polycaprolactone: a review. Chemical Society Reviews, 2009. 38(12): p. 3484-3504.
44. Cipitria, A., et al., Design, fabrication and characterization of PCL electrospun scaffolds-a review. Journal of Materials Chemistry, 2011. 21(26): p. 9419-9453.
45. Woodruff, M.A. and D.W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 2010. 35(10): p. 1217-1256.
46. Bretcanu, O., et al., Electrospun nanofibrous biodegradable polyester coatings on Bioglass®-based glass-ceramics for tissue engineering. Materials Chemistry and Physics, 2009. 118(2–3): p. 420-426.
47. Naldini, L., et al., In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector. Science, 1996. 272(5259): p. 263-267.
48. Chen, S.T., et al., Generation of packaging cell lines for pseudotyped retroviral vectors of the G protein of vesicular stomatitis virus by using a modified tetracycline inducible system. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(19): p. 10057-62.
49. CORDEIRO, M., et al., Molecular therapy in ocular wound healing. British journal of ophthalmology, 1999. 83: p. 1219–1224.
50. Blaese, R.M., Treatment of Severe Combined Immunodeficiency Disease (SCID) due to Adenosine Deaminase Deficiency with CD34+ Selected Autologous Peripheral Blood Cells Transduced with a Human ADA Gene (Amendment). National Institutes of Health. Human Gene Therapy, 1993. 4(4): p. 521-527.
51. Wade, The New York Times. 1999: p. 30 September p. 22.
52. 林淑華, 基因治療的展望. 生物醫學報導, 2000. 3.
53. Tomlinson, E. and A.P. Rolland, Controllable gene therapy pharmaceutics of non-viral gene delivery systems. Journal of Controlled Release, 1996. 39(2–3): p. 357-372.
54. Crystal, R.G., Transfer of genes to humans: early lessons and obstacles to success. Science, 1995. 270(5235): p. 404-10.
55. Segura, T., P.H. Chung, and L.D. Shea, DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach. Biomaterials, 2005. 26(13): p. 1575-1584.
56. Barrett, M., Gene Therapy Gets a Protein Piggyback Across the Blood-Brain Barrier. oxbridgebiotech, 2013.
57. De Smedt, S., J. Demeester, and W. Hennink, Cationic Polymer Based Gene Delivery Systems. Pharmaceutical Research, 2000. 17(2): p. 113-126.
58. Sill, T.J. and H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006.
59. Storrie, H. and D.J. Mooney, Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 2006. 58(4): p. 500-514.
60. Chen, M., et al., Chitosan/siRNA Nanoparticles Encapsulated in PLGA Nano fi bers for siRNA Delivery. ACS Nano, 2012. 6(6): p. 4835-4844.
61. Yang, Y., et al., Core–sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomaterialia, 2011. 7(6): p. 2533-2543.
62. Jiang, H., L. Wang, and K. Zhu, Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. Journal of Controlled Release, (0).
63. Chunder, A., et al., Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties. Colloids and Surfaces B: Biointerfaces, 2007. 58(2): p. 172-179.
64. Hu, W.W., et al., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science and Engineering: C-Materials for Biological Applications, 2014. 37: p. 28-36.
65. 徐藝庭, 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化. 國立中央大學碩士論文, 2012.
66. Barron, A.R., Polymer Light Emitting Diodes. Chemistry of Electronic Materials.
67. Wang, L.-P., et al., Protein adsorption under electrical stimulation of neural probe coated with polyaniline. Colloids and Surfaces B: Biointerfaces, 2010. 80(1): p. 72-78.
68. Pang, X. and I. Zhitomirsky, Electrodeposition of composite hydroxyapatite–chitosan films. Materials Chemistry and Physics, 2005. 94(2–3): p. 245-251.
69. R. Zvitov, A.N., Weight, mechanical and structural changes induced in alginate gel beads by DC electrical field. 2001. 15: p. 33-42.
70. R. Zvitov, A.N., Changes induced by DC electrical field in agar, agarose, alginate and gellan gel beads. Food Hydrocolloids, 2003. 17: p. 255-263.
71. Yoon, Y.I., et al., Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. BioMed Research International, 2013. 2013: p. 309048.
72. Sarmento, B., et al., Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, 2006. 66(1): p. 1-7.
73. Elzein, T., et al., FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 2004. 273(2): p. 381-387.
74. Peng, H., et al., Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 2010. 502(1–2): p. 1-7.
75. Patnaik, S., et al., PEI-alginate nanocomposites: Efficient non-viral vectors for nucleic acids. International Journal of Pharmaceutics, 2010. 385(1–2): p. 194-202.
76. 鄒翔龍, 以褐藻酸鈉調控聚電解質多層膜中DNA的吸附與釋放行為. 國立中央大學碩士論文, 2012.
指導教授 胡威文 審核日期 2014-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明