博碩士論文 101223056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.226.251.68
姓名 張良宇(Liang-Yu Chang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成應用於溶液製程有機太陽能電池的含喹喔啉小分子半導體
(Synthesis of Quinoxaline-Based Small Molecules for Solution Processed Organic Solar Cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著石化燃料的蘊藏量日漸減少,尋找其他符合經濟效益的替代能源,成為迫在眉睫的工作。有機太陽能電池(OPVs)具有低成本、多色彩、可撓曲及適用溶液製程等優點,成為近年來能源研究重點,為了得到更高的光電轉換效率的OPVs,許多科學家致力於主動層材料的開發,特別是主動層中p型共軛分子的合成。本論文即設計以Quinoxaline稠環單元做為中心片段,以3-hexylthiophene延長共軛, 加上4-(5-(2-ethylhexyl)thiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5] thiadiazole (BT-EH)為兩端手臂,合成出可作為OPVs主動層材料之p型(電洞傳輸材料)小分子半導體S5和S6,其在二氯甲烷中最大吸收波長皆為 540 nm,吸收係數為51600 M-1cm-1 和54900 M-1cm-1,成膜後的最大吸收波長則分別為595 nm和605 nm。以S5和S6為P型材料混摻PC71BM作為主動層所組裝成的有機太陽能電池,在AM 1.5 G模擬光源照射下,光電轉換效率分別為0.51%和0.31%。
摘要(英) The dwindling of the fossil fuel reserves, searching for other cost-effective alternative energy has become an urgent work. Organic photovoltaics (OPVs) is one of hot research topics of the green energy due to their eminent advantages such as low cost, colorful, flexibility and solution-processable. Many scientists put their efforts in designing new material of active layer, especial p-type conjugated moecules, to increase the photovoltaic conversion efficiency (PCE) of OPVs. In this thesis, we designed and synthesized two new organic small molecule semiconductor S5 and S6 for applying as a p-type semiconductors in OPVs. These two molecules comprise a quinoxaline or a fused-ring, as the core unit, 3-hexylthiophene as a conjugate moiety and BT-EH (4-(5-(2-ethylhexyl) thiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5] thiadiazole) as arms attached on each side. The absorption spectra (in dichloromethane) of both S5 and S6 have the an absorption maximum at 540 nm and molar absorption coefficient of 51600 M-1cm-1 and 54900 M-1cm-1, respectively. The bulk heterojunction (BHJ) organic photovoltaic devices based on these two organic p-type semiconductor were fabricated via solution process. When PC71BM were used as a n-type material, PCE of the devices based on S5 and S6 are 0.51% and 0.31%, respectively.
關鍵字(中) ★ 有機太陽能電池 關鍵字(英)
論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 ix
附錄 x
第一章、緒論 1
1-1、 太陽能簡介 1
1-2、 太陽能電池 1
1-3、 有機太陽能電池 2
1-4、 有機太陽能電池的工作原理 5
1-5、 有機太陽能電池光電參數 7
1-6、 富勒烯衍生物 (fullerene/C60 derivatives) 簡介 14
1-7、 有機半導體p型材料 16
1-8、 研究動機 27
第二章、實驗部分 32
2-1、實驗藥品 32
2-2、儀器分析與樣品製備 36
2-3、小分子合成步驟 42
第三章、結果與討論 73
3-1、Stille Coupling Reaction 和微波效應 73
3-2、S5及S6的合成 75
3-3、S5及S6的光學性質探討 75
3-4、S5及S6的前置軌域能階分布 79
3-5、分子的熱穩定性探討 83
3-6、S5及S6所組裝的BHJ元件效率 84
第四章、結論 90
參考文獻 91
附錄 98
參考文獻 [1] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. “Solar cell efficiency tables (version 43)”, Prog. Photovolt. Res. Appl. 2014, 22, 1-9.
[2] http://www.nrel.gov/analysis/key_activities_jobs_pv_mfg_cost.html
[3] Kearns, D.; Calvin,M. J. “Photovoltaic Effect and Photoconductivity
in Laminated Organic Systems”, Chem. Phys. 1958, 29, 950-951.
[4] Onsager, L. “Initial Recombination of Ions”, Phys. Rev. 1938, 54, 554-557.
[5] Tang, C. W. “Two-layer organic photovoltaic cell”, Appl. Phys. Lett.
1986, 48, 183-185.
[6] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. “Photoinduced
Electron Transfer from a Conducting Polymer to Buckminster- fullerene”, Science 1992, 258, 1474-1476.
[7] Morita, S.; Zakhidov, A. A.; Yoshino, K. “Doping effect of Buck- minsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescene”, Solid State Commun. 1992, 82, 249-252.
[8] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”. Science 1995, 270, 1789-1791.
[9] Forrest, S. R. “Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques”, Chem. Rev. 1997, 97, 1793-1896.
[10] Miranda, P. B.; Moses, D.; Heeger, A. J. “Ultrafast photogeneration of charged polarons in conjugated polymers”. Phys. Rev. B 2001, 64, 081201.
[11] Armstrong, N. R.; Wang, W.; Alloway, D. M.; Placencia, D.; Ratcliff, E.; Brumbach, M. “Organic/Organic’ Heterojunctions: Organic Light Emitting Diodes and Organic Photovoltaic Devices”, Macromol. Rapid Commun. 2009, 30 , 717-731.
[12] Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology”, Adv. Funct. Mater. 2005, 15, 1617-1622.
[13] Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee K.; Heeger, A. J. “Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %”, Nature Photon. 2009, 3, 297-302.
[14] Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. “Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells”, J. Am. Chem. Soc. 2008, 130, 3619-3623.
[15] Mishra A.; Bauerle, P. “Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology”, Angew. Chem. Int. Ed. 2012, 51, 2020-2067.
[16] Chen, L.; Xu, Z.; Honga Z.; Yang, Y. “Interface investigation and engineering — achieving high performance polymer photovoltaic devices”, J. Mater. Chem. 2010, 20, 2575-2598.

[17] http://www.pveducation.org/pvcdrom/appendices/standard-solar-
spectra
[18] Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. “Origin of the Open Circuit Voltage of Plastic Solar Cells”, Adv. Funct. Mater. 2001, 11, 374-380.
[19] Gadisa, A.; Svensson, M.; Andersson, M. R.; Inganäs, O. “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative”, Appl. Phys. Lett. 2004, 84, 1609-1611.
[20] Cheng, Y.; Yang, S.; Hsu, C.; “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev. 2009, 109, 5868-5923.
[21] Neugebauer, G. H.; Sariciftci, N. S. “Conjugated Polymer- Based Organic Solar Cells”, Chem. Rev. 2007, 107, 1324-1338.
[22] Singh, T. B.; Marjanović, N.; Matt, G. J.; Gűnes, S.; Sariciftci, N. S.; Ramil, A. M.; Andreev, A.; Sitter, H.; Schwődiauer R.; Bauer, S. “High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films”, Org. Electron. 2005, 6, 105-148.
[23] Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F. “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives”, J. Org. Chem. 1995, 60, 532-538.
[24] Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; Hal, P. A. van; Janssen, R. A. J. “Efficient Methano [70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells”, Angew. Chem. Int. Ed. 2003, 42, 3371-3375.
[25] He, Y.; Chen, H.; Hou J.; Li, Y. “A New Acceptor for High Performance Polymer Solar Cells”. J. Am. Chem. Soc. 2010, 132, 1377-1382.
[26] Zhao, G.; He, Y.; Li, Y. “6.5 % Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization”, Adv. Mater. 2010, 22, 4355-4358.
[27] Chen, Y.; Wan, X.; Long, G. “High Performance Photovoltaic Applications Using Solution-Processed Small Molecules”, Acc. Chem. Res. 2013, 46, 2645-2655.
[28] Walker, B.; Tamayo, A. B.; Dang, X.-D.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T.-Q. “Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution-Processed, Small-Molecule Bulk Heterojunction Solar Cells”, Adv. Funct. Mater. 2009, 19, 3063-3069.
[29] Wong, W. W. H.; Ma, C.-Q.; Pisula, W.; Yan, C.; Feng, X.; Jones, D. J.; Mullen, K.; Janssen, R. A. J.; Bauerle, P.; Holmes, A. B. “Self- Assembling Thiophene Dendrimers with a Hexa-peri-hexabenzo- coronene Core−Synthesis, Characterization and Performance in Bulk Heterojunction Solar Cells”, Chem. Mater., 2010, 22, 457-466.
[30] Yin, B.; Yang, L.; Liu, Y.; Chen, Y.; Qi, Q.; Zhang, F.; Yin, S. “Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative”, Appl. Phys. Lett., 2010, 97, 023303.
[31] Burckstummer, H.; Tulyakova, E. V.; Deppisch, M.; Lenze, M. R.; Kronenberg, N. M.; Gsanger, M.; Stolte, M.; Meerholz, K.; Wurthner, F. “Efficient Solution-Processed Bulk Heterojunction Solar Cells by Antiparallel Supramolecular Arrangement of Dipolar Donor–Acceptor Dyes”, Angew. Chem., Int. Ed., 2011, 50, 11628-11632.
[32] Wei, G.; Wang, S.; Sun, K.; Thompson, M. E.; Forrest, S. R. “Solvent-Annealed Crystalline Squaraine: PC70BM (1:6) Solar Cells”, Adv. Energy Mater. 2011, 1, 184-187.
[33] Shang, H.; Fan, H.; Liu, Y.; Hu, W.; Li, Y.; Zhan, X. “A Solution- Processable Star-Shaped Molecule for High-Performance Organic Solar Cells” , Adv.Mater. 2011, 23, 1554-1557.
[34] Liu, Y.; Chen, C.; Hong, Z.; Gao1, J.; Yang, Y. M.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. “Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency” Sci. Rep. 2013, 3, 3356-3362.
[35] Li, Z.; He, G.; Wan, X.; Liu, Y.; Zhou, J.; Long, G.; Zuo, Y.; Zhang, M.; Chen, Y. “Solution Processable Rhodanine-Based Small Molecule Organic Photovoltaic Cells with a Power Conversion Efficiency of 6.1 %”, Adv. Energy Mater. 2012, 2, 74-77.
[36] Zhou, J.; Wan, X.; Liu, Y.; Zuo, Y.; Li, Z.; He, G.; Long, G.; Ni, W.; Li, C.; Su, X.; Chen, Y. “Small Molecules Based on Benzo [1,2-b:4,5-b’] dithiophene Unit for High-Performance Solution- Processed Organic Solar Cells”. J. Am. Chem. Soc. 2012, 134, 16345-16351.
[37] Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. “Solution-Processed and
High-Performance Organic Solar Cells Using Small Molecules with
a Benzodithiophene Unit”, J. Am. Chem. Soc. 2013, 135, 8484-8487.
[38] Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. “Solution-processed small-molecule solar cells with 6.7% efficiency”. Nat. Mater. 2012, 11, 44-48.
[39] Poll, T. S. van der; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. “Non-Basic High-Performance Molecules for Solution-Processed Organic Solar Cells”, Adv. Mater. 2012, 24, 3646-3649.
[40] Gupta1,V.; Kyaw, A. K. K.; Wang, D. H.; Chand, S.; Bazan, G. C.; Heeger, A. J. “Barium: An Efficient Cathode Layer for Bulk- heterojunction Solar Cells”, Sci. Rep. 2013, 3, 1965-1970.
[41]楊哲欽,國立中央大學化學系碩士班論文, 2013
[42] Ozyurt, F.; Gunbas, E. G.; Durmus, A.; Toppare, L. “Processable and multichromic polymer of bis-3-hexylthiophene substituted 4-tert- butylphenyl quinoxaline”, Organic Electronics 2008, 9, 296-302.
[43] Secondo, P.; Fages, F. “Design and Synthesis of Bismacrocyclic Hexaazatriphenylene Derivatives”, Org. Lett. 2006, 8,1311-1314.
[44] Kitamura, C.; Tanaka, S.; Yamashita, Y. “Design of Narrow- Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units”, Chem. Mater. 1996, 8, 570-578.
[45] Milstein, D.; Stille, J. K. “A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium”, J. Am. Chem. Soc., 1978, 100, 3636-3638.
[46] Santos, L. S.; Rosso, G. B.; Pilli, R. A.; Eberlin, M. N. “The Mechanism of the Stille Reaction Investigated by Electrospray Ionization Mass Spectrometry”, J. Org. Chem. 2007, 72, 5809-5812.
[47] Kappe, C. O. “Controlled Microwave Heating in Modern Organic Synthesis”. Angew. Chem. Int. Ed. 2004, 43, 6250-6284.
[48] Walla, P.; Kappe,C. O. “Microwave-assisted Negishi and Kumada cross-coupling reactions of aryl chlorides”, Chem. Commun. 2004, 564-565.
[49] Lipshutz, B. H.; Frieman, B. “Microwave accelerated, Ni/C- catalyzed cross-couplings of in situ-derived zirconocenes”, Tetrahedron 2004, 60, 1309-1316.
[50] Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. “Bulk Heterojunction Solar Cells: Morphology and Performance Relationships”, Chem. Rev., Article ASAP. DOI: 10.1021/cr400353v
[51] Lin, Y.; Lia, Y.; Zhan, X. “Small molecule semiconductors for high-efficiency organic photovoltaics”, Chem. Soc. Rev., 2012, 41, 4245-4272.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明