博碩士論文 100226059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.231.55.243
姓名 許暐旻(Wei-min Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 硼摻雜氫化氧化矽薄膜結構相變化與電性之相互關聯研究
(The correlation between structural phase transition and electrical performance of boron doped SiO:H thin films grown by ECRCVD)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗是以電子迴旋共振化學氣相沉積法(ECR-CVD)來成長硼摻雜氫化氧化矽薄膜,並分析其結構與光電特性。ECR-CVD屬於高密度電漿,相較於傳統的PECVD,ECR-CVD具備良好的沉積速率、無電極汙染、較高氣體使用率與低離子轟擊效應等優點。本實驗使用ECR-CVD通入矽甲烷、氫氣、二氧化碳、與乙硼烷來製備寬能隙與低電阻率的硼摻雜氫化氧化矽薄膜,並且期望應用於異質接面矽晶太陽能電池上。以此薄膜做為太陽能電池的射極層,可以減少入射光的損耗進而提升電池的短路電流。
本實驗將調變二氧化碳流量、工作壓力、乙硼烷流量、微波功率與氫氣稀釋比等參數對硼摻雜氫化氧化矽薄膜特性的影響,並利用橢圓儀、傅里葉變換紅外光光譜儀、紫外光-可見光-近紅外光光譜儀、霍爾量測、電子能譜化學分析儀量測薄膜結構與光電性質。研究結果顯示,硼摻雜氫化氧化矽薄膜中的氧原子雖然可以調製光學性質,但是過多的氧原子相對會導致雜質濃度提升,而犧牲其導電特性,所以如何在氧含量與導電特性上取得平衡是相當重要的關鍵。在調變工作壓力與微波功率下,薄膜結晶率愈高則導電特性愈好,但太小的工作壓力與太高的微波功率會不利於矽氧鍵結的形成。在調變乙硼烷流量下,過多的硼原子也會導致雜質濃度過高,使導電特性變差,然而適量的硼原子也有助於矽氧鍵結的形成。在調變氫氣稀釋比下,高氫稀釋比則有助於氧含量與導電特性的提升。我們可成功在二氧化碳對矽甲烷流量比為0.8且氫稀釋比為60的環境下,製備出硼摻雜氫化氧化矽薄膜之光學能隙可達1.88 eV且電阻率為9.76 × 10^-3 ohm-cm。
摘要(英) This experiment is based on electron cyclotron resonance chemical vapor deposition (ECR-CVD) to deposit boron-doped hydrogenated silicon oxide (SiO:H) films ,and investigating the structural as well as optoelectronic properties of the doping films. Furthermore, compared with conventional PECVD, ECR-CVD has several advantages, such as the excellent deposition rates, no electrode contamination, high gas utilization, low energy ion bombardment due to the property of high-density plasma. The boron-doped hydrogenated silicon oxide films with wide-gap and low resistivity were fabricated by ECR-CVD process by using SiH4 and CO2 gas mixture. In addition, this material will be applied to amorphous silicon / crystalline silicon heterojunction solar cells. Using p-SiO:H films as emitter layer can reduce the loss of the incident light and improved the short-circuit current of solar cells.
In this study, we modulated the CO2 flow rate, process pressure, B2H6 flow rate, microwave power, and hydrogen dilution ratio to investigate the thin films quality. Furthermore, the structural and optoelectronic properties of the p-SiO:H films have been characterized by using spectroscopy ellipsometry, Fourier transform infrared spectrometer, UV-Vis-NIR spectrometer, Hall measurement, and X-ray photoelectron spectrometer. The results of experiments shown that the excess oxygen atoms in the films will increase the defect and degrade the electronic properties. Thus, the control of oxygen content in the films is very important to obtain a high electronic properties. Under the modulation of working pressure and microwave power, the electronic properties were increased with the high crystallinity of the p-Si:O film. But the Si-O bonding will be broken in the condition of lower working pressure and higher microwave power. Under the modulation of B2H6 flow rate, the excess boron atoms in the films will increase the defect and degrade the electronic properties. However, the suitable amount of the boron atom can help the formation of Si-O bonding. Under the modulation of hydrogen dilution, the optical bandgap and electronic properties of p-SiO:H films can be increased in the condition of high hydrogen dilution. Under the condition of [CO2] / [SiH4] = 0.8 and [H2] / [SiH4] = 60, we obtained the optical bandgap and resistivity of the film were 1.88 eV and 9.76 × 10^-3 ohm-cm, respectively.

關鍵字(中) ★ 電子迴旋共振化學氣相沉積法
★ 硼摻雜氫化氧化矽
★ 太陽能電池
關鍵字(英) ★ ECR-CVD
★ p-SiO:H
★ solar cells
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池發展之概述 2
1-3 研究動機 4
1-4 論文架構 4
第二章 基本原理與文獻回顧 5
2-1 電子迴旋共振化學氣相沉積之原理 5
2-2 太陽能電池之基本原理 7
2-3 氫化矽薄膜之原理與介紹 9
2-3.1 氫化矽薄膜之成長機制與特性 9
2-3.2 氫化矽薄膜之摻雜 10
2-4 氫化氧化矽薄膜之原理與介紹 12
2-4.1 氫化氧化矽薄膜之成長機制與特性 12
2-4.2 氫化氧化矽薄膜之應用 13
第三章 研究方法與實驗設備 16
3-1 電子迴旋共振化學氣相沉積系統之介紹 16
3-1.1 進氣系統 16
3-1.2 真空系統與加熱設備 17
3-1.3 微波共振系統 17
3-2 樣品製備流程 21
3-2.1 試片清洗流程 21
3-2.2 硼摻雜氫化氧化矽薄膜之製備流程 21
3-3 量測設備與相關原理 23
3-3.1 橢圓偏振儀 23
3-3.2 傅里葉變換紅外光光譜儀 25
3-3.3 紫外光-可見光-近紅外光光譜儀 27
3-3.4 霍爾量測 29
3-3.5 電子能譜化學分析儀 30
3-3.6 二次離子質譜儀 31
3-3.7 高解析度X射線繞射分析儀 32
第四章 結果與討論 33
4-1 低氫與高氫稀釋比下調變二氧化碳流量 33
4-2 調變工作壓力 47
4-3 調變乙硼烷流量 55
4-4 調變微波功率 64
4-5 調變氫氣稀釋比 73
第五章 結論與未來展望 80
5-1 結論 80
5-2 未來展望 85
參考文獻 87
參考文獻 [1] 傳統能源之全球蘊藏量預估,經濟部能源局, (2010).
[2] Donald A. Neamen, "Semiconductor Physics and Devices", pp. 177-180, (2003).
[3] A. Matsuda and K. Tanaka, Thin Solar Film 92,171, (1982).
[4] A. Matsuda, in Conference Record of the 25th IEEE photovoltaic Specialist Conference (IEEE, New York, 1996) p.1029, (1996).
[5] R. Robertson, D. Hils, H. Chatham, and A. Gallagher, "Radical species in argon‐silane discharges" Appl. Phys. Lett. , Vol. 43, pp. 544, (1983).
[6] 陳治明, 「非晶半導體材料與器件」, 科學出版社, (1991).
[7] A. Matsuda, "Microcrystalline silicon. Growth and device application," Journal of Non-Crystalline Solids, Vol. 338, pp. 1-12, Jun 15 (2004).
[8] K. Haga, K. Yamamoto, M. Kumano, and H. Watanabe, “Wide Optical-Gap a-Si:O:H Films Prepared from SiH4–CO2 Gas Mixture”, Japanese Journal of Applied Physics, Vol. 25, pp. L39-L41 (1986).
[9] D. Das, S.M. Iftiquar, and A.K. Barua, “Wide optical-gap a-SiO:H films prepared by rf glow discharge” J. Non-Cryst. Solids, Vol. 210, pp. 148 (1997).
[10] S.M. Iftiquar, “The roles of deposition pressure and rf power in opto-electronic properties of a-SiO:H films” J. Phys. D: Appl. Phys., Vol. 31, pp. 1630 (1998).
[11] A. Samanta, and D. Das, “Optical, electrical and structural properties of SiO:H films prepared from He dilution to the SiH4 plasma” J. Phys. D: Appl. Phys., Vol. 42, pp. 215404 (2009).
[12] H. Fujiwara, T. Kaneko, and M. Kondo, “Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells” Appl. Phys. Lett., Vol. 91, pp. 133508 (2007).
[13] C. Banerjee, J. Sritharathikhun, A. Yamada, and M. Konagai, “Fabrication of heterojunction solar cells by using microcrystalline hydrogenated silicon oxide film as an emitter” J. Phys. D: Appl. Phys., Vol. 41, pp. 185107 (2008).
[14] D.H. Thang, H. Muta, and Y. Kawai, "Investigation of plasma parameters in 915 MHz ECR plasma with SiH4 / H2 mixtures," Thin Solid Films, Vol.516, pp. 4452-4455 (2008).
[15] N. Fujiwara, H. Sawai, M. Yoneda, K. Nishioka, K. Horie, K. Nakamoto, and H. Abe, "High-Performance Electron-Cyclotron Resonance Plasma-Etching with Control of Magnetic-Field Gradient," Japanese Journal of Applied Physics, Vol. 30, pp. 3142-3146 (1991).
[16] S. Samukawa, and T. Nakamura, "Dependence of Electron-Cyclotron Resonance Plasma Characteristics on Magnetic-Field Profiles," Japanese Journal of Applied Physics, Vol. 30, pp. L1330-L1332 (1991).
[17] P. Klement, C. Feser, B. Hanke, K. von Maydell, and C. Agert, "Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers," Appl. Phys. Lett., Vol. 102 (2013).
[18] A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Sol Energ Mat Sol C, Vol. 78, pp. 3-26 (2003).
[19] D. E. Aspnes, and A. A. Studna, "Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb from 1.5 to 6.0 eV", Phys. Rev. B , Vol.27, pp. 985 (1983).
[20] D. Das "Evolution of microcrystalline growth pattern by ultraviolet spectroscopic ellipsometry on Si:H films prepared by Hot-Wire CVD," Solid State Communications, Vol. 128, pp. 397–402 (2003).
[21] C.J. Fang, K.J. Gruntz, L. Ley, M. Cardona, F.J. Demond, G. Mu¨ ller, and S. Kalbitzer, "The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques," J. Non-Cryst. Solids, Vol. 35–36, pp. 255–260 (1980).
[22] G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, and W. Czubatyj, "Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films, " Phys. Rev. B, Vol.28, pp. 3225–3233 (1983).
[23] J. Tauc, et al.,” States in the gap,” Journal of Non-Crystalline Solids, Vol. 8-10, pp. 569-585 (1977).
[24] S.M. SZE, "Semiconductor Devices Physics and technology", pp. 55~56 (2001).
[25] Donald A. Neamen, "Semiconductor Physics and Devices", pp. 177~180 (2003).
[26] M. Labrune, "Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells," ParisTech Doctoral thesis in Materials Science (2011).
[27] A. Samanta, and D. Das, "Studies on the structural properties of SiO:H films prepared from (SiH4+CO2+He) plasma in RF-PECVD," Solar Energy Materials & Solar Cells, Vol. 93, pp. 588–596 (2009).
[28] S. Inthisang, K. Sriprapha, A. Yamada, and M. Konagai, "Characterization of Wide Bandgap a-SiO:H Films and Their Application to Thin Film Solar Cells," IEEE, Vol.978, pp.4244-1641 (2008).
[29] R. Saleh, and N. H. Nickel, " Raman spectroscopy of B-doped microcrystalline silicon films," Thin Solid Films, Vol.427, pp.266–269 (2003).
[30] K. Shimakawa, " Electronic and optical properties of hydrogented microcrystalline silicon: review," J. Mater. Sci.: Mater. Electron., Vol.15, pp.63-67 (2004).
[31] Q. S. Lei, Z. M. Wu, J. P. XI, X. H. Geng, Y. Zhao, and J. Sun, "Development of highly conductive boron-doped microcrystalline silicon films for application in solar cell, " Int. J. Mod. Phys. B, Vol.20, No.3, pp.303-314 (2006).
[32] T. Bronger, and R. Carius, " Carrier mobilities in microcrystalline silicon films," Thin Solid Films, Vol.515, pp. 7486-7489 (2007).
[33] D. Das, M. Jana, " Development of highly conducting p-type c-Si:H films from minor diborane doping in highly hydrogenated SiH4 plasma," Mater. Lett., Vol.58, pp.980-985 (2004).
[34] P. Kumar, M. Kupich, D. Grunsky, B. Schroeder, " Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells," Thin Solid Films, Vol.501, pp.260 -263 (2006).
指導教授 張正陽(Jenq-yang Chang) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明