以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:36 、訪客IP:3.147.48.226
姓名 張庭華(Ting-Hua Cheng ) 查詢紙本館藏 畢業系所 土木工程研究所 論文名稱 海岸山脈安山岩之鹼-骨材反應特性及抑制方法 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本文針對海岸山脈安山岩進行鹼-骨材反應特性及抑制方法的研
究,以調整鹼含量及海岸山脈安山岩含量的方式,進行水泥砂漿棒
膨脹試驗(ASTM C227)、混凝土角柱試驗(ASTM C1293),探討
海岸山脈安山岩在鹼-骨材反應過程中的膨脹特性。並利用飛灰和爐
石兩種波索蘭材料分別置換水泥砂漿棒及混凝土角柱中部份水泥
量,以探討抑制海岸山脈安山岩鹼-骨材反應的成效。此外,針對花
東海岸線的混凝土消波塊進行現地調查及鑽心取樣工作,並進行醋
酸鈾試驗及相關分析。
根據研究結果發現,海岸山脈安山岩具有明顯的鹼-骨材反應,
改變水泥砂漿棒及混凝土角柱中海岸山脈安山岩含量,發現悲極值
(pessimum)的存在,安山岩悲極比例約為50%。此外,骨材中只
要有少量海岸山脈安山岩,即可使膨脹應變量大幅增加,產生危害
性的膨脹量。
以飛灰和爐石兩種波索蘭材料抑制海岸山脈安山岩的鹼-骨材反
應,可以得到明顯的效果,飛灰和爐石取代水泥比例愈高,抑制效
果愈佳,而抑制效果會因波索蘭材料置換水泥的比例、波索蘭材料
種類、反應性骨材的種類及試體中的鹼含量不同而異。
本文對花東海岸線濱海地區進行鹼-骨材反應案例之現地調查及
鑽心取樣分析,發現調查地點之混凝土消波塊具有鹼-骨材反應的多
項特徵,包括:不規則地圖狀裂縫、貫穿骨材裂縫、出現反應膠體、
骨材邊緣發生暗色或淺色的反應圈等。此外,將鑽心試體切片進行
醋酸鈾螢光試驗,沿裂縫處或安山岩骨材周圍常出現淡黃綠色的螢
光反應,可作為鹼-骨材反應生成物膠體存在的佐證。從前述各種徵
象綜合研判,調查地點混凝土消波塊之劣化應與鹼-骨材反應有關。摘要(英) The main goal of this article is to investigate the characteristics of
alkali-aggregate reaction of andesites from coastal range and search for a
solution. In order to inhibit this kind of phenomena, two methods
provided here include the adjustment of alkali contents and andesites’
contents in mortar bar test (ASTM C227)as well as concrete prism
test (ASTM C1293) in order to study the expansion of this reaction.
Furthermore, the cement used in ASTM C227 and ASTM C1293
were replaced with different amounts of fly ash and slag to prevent an
alkali-aggregate reaction. In addition, samples of the drilling core of
precast concrete blocks were obtained from Hualien-Taitung seaside and
analyzed using by uranyl acetate fluorscence method.
Based on our results, we have observed an obvious change in the
alkali-aggregate reaction of andesite from coastal range. Also we have
found that the pessimum content of andesite is around 50% when the
amount of andesite in mortar bar and concrete prism was changed.
Moreover, a small amount of andesite from costal range will create the
expansion dramatically and cause damage.
Thus the addition of fly ash and slag (pozzolan materials) will inhibit
the alkali-aggregate reaction of andesite from the coastal range. It is
also obvious that the better inhibition will be obtained when a higher
content of fly ash and slag is in the concrete. The occurrence of the
inhibition effect is based on the ratio of the contents of pozzolan materials
in concrete, the kinds of pozzolan materials , reactive aggregate and
alkali contents of samples.
We have characterized the alkali-aggregate reactions of precoast
concrete blocks from Hualien-Taitung seaside as the following. An
irregular map crack, the depth of aggregate crack, the appearance of
reactive gel and dark or pale reaction rims surrounding aggregates.
Moreover, when the drilling core samples were tested using the uranyl
acetate fluorescence method, the appearance of pale yellow-greenish
fluorescence surrounding the cracks is evidence of the existance of
reactive gel in the alkali-aggregate reaction. In summary, the
deterioration of precast concrete blocks from Hualien-Taitung seaside is
related to the alkali-aggregate reaction.論文目次 中文摘要… … … … … … … … … … … … … … … … … … … … … … … . .Ⅰ
英文摘要… … … … … … … … … … … … … … … … … … … … … … … . .Ⅱ
目錄… … … … … … … … … … … … … … … … … … … … … … … … … Ⅵ
圖目錄… … … … … … … … … … … … … … … … … … … … … … … … . .Ⅷ
表目錄… … … … … … … … … … … … … … … … … … … … … … … … . XI
照片… … … … … … … … … … … … … … … … … … … … … … … … … . .XII
第一章 緒論....................................................................................1
1-1 研究動機..........................................................................1
1-2 研究目的..........................................................................2
1-3 研究範圍及方法...............................................................3
1-4 論文架構..........................................................................3
第二章 文獻回顧.............................................................................8
2-1 鹼-骨材反應概論..............................................................8
2-2 鹼-骨材反應的分類..........................................................8
2-2-1 鹼-氧化矽反應.....................................................8
2-2-2 鹼-碳酸鹽反應.....................................................8
2-2-3 鹼-矽酸鹽反應.....................................................9
2-3 鹼-骨材反應之機制........................................................... 10
2-3-1 鹼-骨材反應機制............................................... 10
2-3-2 鹼-骨材反應的過程........................................... 13
2-4 影響鹼-骨材反應膨脹的因素............................................ 16
2-4-1 反應性骨材........................................................ 16
2-4-2 孔隙溶液............................................................ 20
2-4-2-1 水泥成分中的鹼.................................21
2-4-2-2 孔隙溶液中的鹼.................................25
2-4-3 水灰比............................................................... 27
2-4-4 溫度................................................................... 27
2-4-5 濕度................................................................... 28
2-4-6 混凝土的孔隙率................................................ 29
2-4-7 附加劑............................................................... 29
2-5 鹼-骨材反應的特徵........................................................ 30
2-5-1 外觀方面............................................................ 30
2-5-2 內部方面............................................................ 32
2-6 鹼-骨材反應造成之危害................................................ 34
2-7 悲極值(pessimum)之探討.......................................... 35
2-7-1 悲極值(pessimum)......................................... 35
2-7-2 造成悲極值存在之因素..................................... 36
2-7-2-1 反應性骨材含量.................................36
2-7-2-2 反應性骨材粒徑.................................37
2-7-2-3 鹼量.................................................... 38
2-7-2-4 波索蘭材料之添加量.......................... 38
2-8 抑制鹼-骨材反應的方法................................................ 39
2-9 波索蘭材料與鹼-骨材反應之關係.................................. 41
2-10 醋酸鈾螢光試驗法........................................................ 43
第三章 試驗計劃與方法................................................................ 44
3-1 試驗規劃........................................................................ 44
3-2 試驗材料........................................................................ 46
3-3 試驗方法與步驟............................................................. 49
3-3-1 鹼-骨材反應潛能之化學試驗(ASTM C289
Chemical Method)............................................. 49
3-3-1-1 儀器與試劑.......................................... 51
3-3-1-2 試驗步驟............................................. 51
3-3-1-3 試驗配比............................................. 57
3-3-2 鹼-骨材反應潛能之水泥砂漿棒試驗(ASTMC227 Mortar Bar Test) .................................... 57
3-3-2-1 儀器與條件........................................ 58
3-3-2-2 試驗步驟............................................ 59
3-3-2-3 試驗配比............................................ 62
3-3-3 鹼-骨材反應潛能之加速水泥砂漿棒試驗
(ASTM C1260 Accelerated Mortar Bar Test)..... 64
3-3-3-1 儀器與條件........................................ 65
3-3-3-2 試驗步驟............................................ 66
3-3-3-3 試驗配比............................................ 68
3-3-4 混凝土角柱膨脹試驗法( ASTM C1293
Concrete Prism Test).................................. 69
3-3-4-1 儀器與條件........................................ 69
3-3-4-2 試驗步驟............................................ 71
3-3-4-3 試驗配比............................................ 72
3-3-5 醋酸鈾螢光試驗................................................. 74
3-3-5-1 辨別基礎............................................ 74
3-3-5-2 設備及材料準備................................ 74
3-3-5-3 試驗程序............................................ 75
第四章 試驗結果及分析................................................................ 76
4-1 海岸山脈安山岩反應性之探討....................................... 76
4-1-1 鹼-骨材反應潛能之化學試驗.............................. 76
4-1-2 加速水泥砂漿棒試驗(ASTM C1260) .............. 79
4-1-3 水泥砂漿棒膨脹試驗(ASTM C227)................ 79
4-1-4 混凝土角柱試驗(ASTM C1293)...................... 86
4-1-5 綜合討論.............................................................. 88
4-2 不同海岸山脈安山岩含量對鹼-骨材反應之影響........... 95
4-2-1 加速水泥砂漿棒試驗(ASTM C1260) .............. 96
4-2-2 水泥砂漿棒試驗(ASTM C227)........................ 99
4-2-3 混凝土角柱試驗(ASTM C1293).................... 104
4-2-4 綜合討論............................................................ 111
4-3 不同波索蘭材料置換水泥比例對膨脹量之影響.......... 112
4-3-1 水泥砂漿棒膨脹試驗......................................... 112
4-3-2 混凝土角柱試驗(ASTM C1293).................... 125
4-3-3 綜合討論............................................................ 132
4-4 現地案例調查及分析探討............................................ 136
4-4-1 石梯漁港........................................................... 137
4-4-2 大俱來............................................................... 142
4-4-3 永福................................................................... 146
4-4-4 烏石鼻............................................................... 147
4-4-5 重安.................................................................... 154
4-4-6 嘉平.................................................................... 158
4-4-7 鑽心試體反應性骨材含量分析 ........................ 163
第五章 結論與建議..................................................................... 174
5-1 結論.............................................................................. 174
5-2 建議.............................................................................. 176
參考文獻........................................................................................ 177參考文獻 王淑慧(1999),「台灣地區岩石之鹼-骨材反應潛能研究」,
碩士論文,國立中央大學應用地質研究所,中壢。
王櫻茂、吳振成、楊宏儀、田永銘、許智能(1990),「以
普蜀蘭混合材料防治鹼-骨材反應」(一),行政院國科會專
題研究報告。
王櫻茂、吳振成、楊宏儀、田永銘、許智能 (1991),「以
普蜀蘭混合材料防治鹼-骨材反應」(二),行政院國科會專
題研究報告。
王櫻茂、吳振成、楊宏儀、田永銘、陳裕新(1989),「台
灣地區鹼-骨材反應特性之研究」,行政院國科會專題研究報
告。
台灣省礦務局(1996) ,「台灣主要的礦物與岩石」,台灣省礦務局。
田永銘、楊世和、彭柏翰、王淑慧(1999),「台灣的鹼-骨材反應問
題與對策」,中國土木水利工程學會會刊,第二十六卷,第一
期,第78~94頁。
田永銘、王淑慧、潘亮宇、陳維民(1999),「混凝土鹼骨材反應劣
化與防治」,構造物破壞原因探討與處置研討會論文集,第
125~150 頁,台北。
田永銘、楊世和(1997),「台灣東部反應性骨材之探討及分析」,East
Asia Alkali-Aggregate Seminar, Tottori, Japan, pp. 13-26。
田永銘、王淑慧、陳仁達、林晏吉(2000a),「台灣東部鹼反應性骨
材之悲極效應研究」,中國地質學會,八十九年年會暨學術研
討會論文集,第430~435頁,台北。
田永銘、王淑慧、楊世和、陳仁達(2000b),「台灣地區混凝土鹼-
骨材反應問題與對策」,交通部國道新建工程局專題演講書面
資料,台北。
178
田永銘、王淑慧、彭柏翰、賴武德(2000c),「台灣安山岩質骨材之
鹼反應行為」,中華民國第五屆結構工程研討會論文集(一),
第643~647頁,南投。
田永銘、王淑慧、陳仁達、彭柏翰(2000d),「花東地區海岸構造物
之鹼-骨材反應調查研究」,第十一屆水利工程研討會論文集,
第Ι81~Ι87頁,台北。
田永銘、楊世和、王淑慧(2001a),「台灣東部骨材鹼反應潛能研究」,
中國土木水利工程學刊,第十三卷,第一期,第217~226頁。
田永銘、潘亮宇、吳柏林(2001b),「台灣混凝土鹼-骨材反應問題
與對策」,交通部公路局第四區工程處專題演講書面資料,宜
蘭。
林晏吉(1999),「花東地區鹼-骨材反應之成因探討」,碩士
論文,國立中央大學土木工程研究所,中壢。
柯正龍(1999),「基隆及蘇澳港港區混凝土構造物鹼質與
粒料反應調查研究」,碩士論文,國立中央大學土木工程研
究所,中壢。
周文鴻(1992),「反應性骨材與普蜀蘭材料之粒徑大小對
鹼-骨材反應影響之研究」,碩士論文,國立成功大學土木工
程研究所,台南。
梁士宏(1995),「制定鹼-骨材反應試驗方法及其規範研究」,
碩士論文,國立成功大學土木工程研究所,台南。
許智能(1991),「以普蜀蘭混合材料防制鹼-骨材反應」,碩
士論文,國立成功大學土木工程研究所,台南。
陳仁達(1998),「花東地區鹼-骨材反應及防治方法」,碩士
論文,國立中央大學土木工程研究所,中壢。
陳裕新(1989),「台灣地區鹼-骨材反應特性之研究」,碩士
論文,國立成功大學土木工程研究所,中壢。
彭柏翰(2000),「花蓮溪安山岩含量之悲極效應研究」,碩
士論文,國立中央大學土木工程研究所,中壢。
張文恭(2000),「花蓮地區單一岩種之鹼-骨材反應研究」,
179
碩士論文,國立中央大學應用地質研究所,中壢。
褚炳麟、顏聰、盧俊寬(1994),「台灣西部地區砂石料源
鹼質反應調查研究」,交通部國道新建工程局研究報告,台
北。
楊世和(1997),「台灣東部反應性骨材之探討及分析」,碩
士論文,國立中央大學土木工程研究所,中壢。
謝文凱 (1997),「抑制鹼-骨材反應之基礎研究」,碩士論
文,國立中央大學土木工程研究所,中壢。
ASTM C1260-94 (1994) “Standard Test Method for Potential
Alkali Reactivity of Aggregate ( Mortar Bar Method ) ”:Annual
Book of ASTM Standards, Section 4, Vol. 04. 02.
ASTM C1105-95 (1995), “Standard Test Method for Length Change of
Concrete Due to Alkali-Carbonate Rock Reaction,” Annual book of
ASTM Standards, pp. 566-569.
ASTM C1260-94 (1994), “Standard Test Method for Potential Alkali
Reactivity of Aggregates (Mortar-Bar Method),” Annual book of
ASTM Standards, pp. 644-647.
ASTM C1293-95 (1995), “Standard Test Method for Concrete
Aggregates by Determination of Length Change of Concrete Due
To Alkali-Silica Reaction,” Annual book of ASTM Standards, pp.
648-653.
ASTM C227-90 (1990), “Standard Test Method for Potential Alkali
Reactivity of Cement-Aggregate Combinations (Mortar-Bar
Method),” Annual book of ASTM Standards, pp. 125-129.
ASTM C289-94 (1994), “Standard Test Method for Potential Alkali-
Silica Reactivity of Aggregate (Chemical Method),” Annual book
of ASTM Standards, pp. 156-162.
ASTM C586-92(1992), “Standard Test Method for Potential Alkali
Reactivity of Carbonate Rocks for Concrete Aggregate (Rock
180
Cylinder Method),” Annual book of ASTM Standards, pp. 282-
285.
Chatterji, S. (1978), An Acelerated Method for the Detection of
Alkali-Aggregate Reactivities of Aggregates, Cement and
Concrete Research,Vol.8,pp.647-650.
Chatterji, S.(1979), The Role of Ca(OH)2 in the Breakdown of
Portland Cement Concrete Due To Alkali-Silica Reaction,
Cement and Concrete Research ,Vol.8,pp.647-650.
Chatterji, S., Thaulow, N. and Jensen ,A. D.(1987), Studies of Alkali-
Silica Reaction. Part 4. Effect of Different Alkali Salt Solution on
Expansion, Vol.17.pp.777-783.
Chatterji,S. ,Thaulow,N. and Jensen,A.D.(1988) Studies of
Alkali-Silica Reaction. Part 6.Practical Implication of a
Proposed Reaction Mechanism, Cement and Concrete
Research,Vol.18,pp.363-366.
Davies, G. and Oberholster, R. E. (1987) , An Interlaboratory
Test Programme on the NBRI Accelerated Test to Determine the
Alkali-Reactivity of Aggregates:National Building Research
Institute, CSIRO, Special Report BOU 92, Pretoria, RSA, p. 16.
Davies, G. and Oberholster, R. E. (1987) , Use of the NBRI
Accelerated Test to Evaluate the Effectiveness of Mineral
Admixtures in Preventing the Alkali-Silica Reaction:Cem.
Concr. Res., Vol. 17, p. 97-107.
Diamond, S. (1975a), “Pore Solutions and Alkali-Aggregate Attack.
Symp. on Alkali-Aggregate Reaction,” Preventative Measures,
Reykjavik, pp. 165-179.
Diamond, S. (1975b), “A Review of Alkali-Silica Reaction and
181
Expansion Mechanism,” Cement and Concrete Research, Vol. 5,
pp. 329-346.
Diamond, S. (1989), “ASR-Another Look at Mechanisms,” 8th
International Conference on Alkali-Aggregate Reaction, Japan,
pp. 83-94.
Diamond, S., Thaulow, N. (1974), “A Study of Expansion Due to Alkali-
Silica Reaction as Conditioned by The Grain Size of The
Reactive Aggregate,” Cement and Concrete Research, Vol. 4, pp.
591-607
Duncan, M. A. G., Swenson, E. G., Gillot, J. E. and Foran, M. R.
(1973), Alkali Aggregate Reaction in Nova Scotia. Pt. I.
summary of a Five-Year Study:Cem. Concr. Res., Vol. 3, p.
119-128.
Farbiarz, J. D. C., Schuman, R. L., Carrasquillo and Snow P. G.
(1989), “Alkali-Aggregate Reaction in Fly Ash Concrete,” 8th
International Conference on Alkali-Aggregate Reaction, Japan,
pp. 241-246.
Gillott, J. E. (1975), Alkali-Aggregate Reaction in Concrete:
Engineering Geology, Vol. 9, p.303-326.
Hobbs, D.W.(1988) ,Alkali-Silica Reaction in Concrete, Thomas Telford.
Hobbs, D.W. (1989), Effect on Mineral and Chemical Admixtures on
Alkali-Aggregate Reaction ,Porc . 8th Int .Conf., Kyoto, pp.173-186.
Ludmila, D.M. (1983) , Handbook of Concrete Aggregates:
Noyes Publications, Park Ridge, New Jersey, USA.
Nixon, P. J., Page, C. L., Hardcastle, J., Canham, I. and Pettifer,
K.(1989) ,Chemical Studies of Alkali Silica Reaction in Concrete
With Different Flint Content, 8th International Conference on
Alkali-Aggregate Reaction,pp.129-134.
Oberholster, R. E., and Davies, G. (1986), An Accelerated
Method for Testing the Potential Alkali Reactivity of Siliceous
182
Aggregates:Cem. Concr. Res., Vol. 16, p.181-189.
Shayan, A. (1992), Prediction of Alkali Reaction Potential of
Some Australian Aggregates and Correlation With Service
Performance:ACI Materials Journal, Vol. 89, p.13-23.
Shayan, A. (1997), Effects of NaOH and NaCl Solutions and
Temperature on the Behavior of Specimens Subjected to
Accelerated AAR Tests:Cem. Concr. Res., Vol. 28, p.25-31.
Shayan, A. and Ivanusec, I. (1996) , An Experimental
Clarification of the Association of Delayed Ettringite Formation
With Alkali-Aggregate Reaction:Cem. Concr. Composites, Vol.
18, p.161-170.
Shayan, A. and Quick, G. (1989) , Microstructure and
Composition of AAR Products in Conventional Standard and
New Accelerated Testing:Proc. 8th ICAAR, p.475-482.
Shayan, A., Diggins, R., Ritchie, D. F. and Westgate, P. (1987),
Evaluation of Western Australian Aggregates for Alkali-
Reactivity in Concrete:Proc. 7th ICAAR, p.247-252.
Shayan, A., Ivanusec, I. and Westgate, P. L. (1988),
Accelerated Testing of Some Australian and Overseas
Aggregates for Alkali-Aggregate Reactivity:Cem. Concr. Res.
Vol. 18, p. 843-851.
SHRP-C/FR-91-101(1991), Handbook for the Identification of
Alkali-Silica Reactivity in Highway Structures, Strategic
Highway Research Program.
Sibbick, R. G. and Page, C. L., Proc. 10th ICAAR, Melbourne,
Australia, p.822.
Stanton, T. E. (1940) , The Expansion of Concrete Through
Reaction Between Cement and Concrete:Proc. American Soc.
Civil Engineers, Vol.66, p. 1781-1811.
183
Swamy, R. N. and Al-Asalli, M. M(1986), Influence of Alkali-Silica
Reaction on the Engineering Properties of Concrete , American
Society for Testing and Materials ,pp.69-86.
Swamy, R. N.(1992), The Alkali-Silica Reaction in Concrete,
Van Nostrand Reinhold, New York.
Yen, T., Chu, B. L. , Lu, C. K. ,Liao,J.C. (1996) , Alkali-
Aggregate Reactivity in Western Taiwan , Proceedings of the 10th
Interational Conference on Alkali-Aggregate Reaction in
Concrete, Australia,pp. 166-173.指導教授 田永銘(Yong-Ming Tien) 審核日期 2001-7-17 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare