博碩士論文 101622019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:156 、訪客IP:18.218.168.16
姓名 葉德揚(Te-yang Yeh)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用多點震源地震矩張量逆推技術快速分析大地震之破裂過程
(Application of Multiple-source Moment Tensor Analysis to Real-time Detection and Characterization of Large Earthquake)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 根據先前的研究顯示台灣區域之中小規模(Mw < 6.5)地震的點震源參數可以藉由線上即時監測系統(Real-time Moment Tensor, RMT)獲得。此方法是利用預先計算好之格林函數資料庫進行長週期(10 – 50 s)寬頻即時訊號連續逆推,結合格點搜尋方法,可以同時獲得震源位置、時間以及地震矩張量。此方法不需等待氣象局發布快速地震測報資訊,在實際應用上相當有效率。然而,點震源為極簡單之震源描述,在面對破裂過程複雜之大地震的同時可能面對系統無法完整描述震源破裂的問題。在本研究中提出了一個結合了多頻段RMT系統和多點震源地震矩逆推技術的研究流程,同時即時監測大地震,並快速分析其震源破裂之特性。多頻段RMT系統目前於離線測試當中,其中包含了四個子系統,每個子系統的頻段參數設定適用於不同的規模範圍。利用此系統,可以即時得到不同規模之地震的點震源參數。點震源參數得到之後,更詳細之破裂過程可以經由多點震源地震矩張量逆推技術來分析。此技術可偵測震源破裂過程中貢獻震源滑移較大的子事件,藉此快速掌握初步震源破裂之特性。為了檢測系統的可靠性,本研究方法除了經過理論波形測試之外,另於台灣和日本地區發生的顯著中大地震中選出六筆地震事件做為離線測試,並將得到的震源模型和有限斷層模型比較。結果顯示,利用本研究提出之方法得到的震源模型和有限斷層模型在空間和時間上是相吻合的。值得注意的是,利用了即時的資料和快速分析得到之結果,對於大地震後的災後應變(地震,海嘯災害)可以提供更精確的參考資訊。
摘要(英) It is shown that point-source parameters of events of small-to-moderate sizes (Mw<6.5) can be automatically determined by the Real-time Moment Tensor monitoring system (RMT) in Taiwan. The RMT system continuously inverts long-period (10-50s) wave field with a pre-calculated grid-based Green’s function database. This efficient approach tremendously reduces the time lag between event detection and focal mechanism determination. However, large earthquakes may distort the point-source assumption due to the frequency band. To derive stable point-source parameters of large earthquakes, the multiple-frequency bands RMT system was implemented. Each sub-system of the multiple-frequency bands RMT systems is specifically designed to estimate stable moment tensor solutions for earthquakes in a given magnitude range. Besides point-source parameters, dominant attributes of rupture processes can be analyzed using a multiple-source moment tensor inversion technique. The multiple-source analysis determines significant sub-events which account for large seismic moment during source ruptures (i.e. asperity).
A procedure combining the multiple-frequency bands RMT system and the multiple-source moment tensor analysis is proposed. Some significant earthquakes in Taiwan and Japan are analyzed using the proposed approach as real-event exercises. The multiple-source model yields simple and robust determination of complex seismic source features. The characterized sub-events are in good agreement with asperities demonstrated in finite-fault models. By taking advantage of real-time determination of overall rupture processes, this approach can provide reliable assessments of associated hazards.
關鍵字(中) ★ 即時監測系統
★ 震源機制
★ 震源破裂過程
★ 波形逆推
關鍵字(英) ★ real-time monitoring
★ focal mechanism
★ rupture process
★ waveform inversion
論文目次 Chinese abstract………………………………………………………………………………...i
English Abstract………………………………………………………………………………ii
Acknowledgements……………………………………………………………………………iii
List of contents………………………………………………………………………………iv
List of table and figures……………………………………………………………………...vii
Chapter 1: Introduction………………………………………………………………………...1
1.1 General overview...…………………………………………………………………...1
1.2 Point-source moment tensor inversion…..……………………………………………2
1.2.1 Typical moment tensor inversion scheme…………………………………...2
1.2.2 Grid-search scheme……………………………………………………….…4
1.3 Multiple-source moment tensor inversion…………………………………………..5
1.4 The following chapters…………………………………...……………………….…..6
Chapter 2: Point-source and Multiple-source Seismic Moment Tensor Inversion…………...11
2.1 Overview……………………………………………………………………………11
2.2 Moment tensor inversion……………………………………...…………………….12
2.2.1 Representation of seismic source……………………………..……………12
2.2.2 Moment tensor determination…..…...……………………………….…….14
2.2.3 Decomposition of seismic moment tensor….…………………….....……..15
2.2.4 Waveform misfit…….……………………………………………………17
2.3 Point-source inversion scheme……………………………………………..............18
2.3.1 Grid-search scheme………………………………………………………...19
2.3.2 Multiple-frequency bands RMT system….………………………………...20
2.4 Multiple-source moment tensor inversion…………………………………………22
2.4.1 Passband selection for the multiple-source analysis……………………….23
2.4.2 Sub-event determination…………………………………………………24
2.5 System parameters………………………………………………………………...25
2.5.1 Green’s function database………………………………………………….25
2.5.2 Green’s function computation……………………………………………26
2.5.3 Grid systems and Green’s functions for events in Taiwan………………....26
2.5.4 Grid systems and Green’s functions for events in Japan..………………....27
2.6 Synthetic test………………………………………………………………………28
2.6.1 Settings of source rupture model…………………………………………28
2.6.2 Green’s function database and synthetic waveforms………………………29
2.6.3 Inversion and results……………………………………………………….30
Chapter 3: Multiple-source Determination for Recent Large Earthquakes in Taiwan and
Japan…………………………………………………………………………………………..51
3.1 Overview……………………………….....………………………………................51
3.2 Earthquakes in Taiwan……………………………………………………................51
3.2.1 The 2003 Mw 6.8 Chengkung earthquake…………………………………….51
3.2.2 The 2002 Mw 7.1 Hualien earthquake………………………………………...53
3.2.3 Multiple-source analysis of the 1999 Mw 7.6 Chi-Chi earthquake…………...54
3.3 Earthquakes in Japan……………………………………………….………………..55
3.3.1 The 2011 Tohoku-Oki Mw 7.3 foreshock……………………………………..56
3.3.2 The 2011 Tohoku-Oki Mw 9.1 mainshock………………….…………………57
3.3.3 The 2011 Tohoku-Oki Mw 7.9 aftershock…………………………………….59
Chapter 4: Discussions…………………………………………………………….………….75
4.1 Model validation…………………………………………………………………….75
4.2 Clipping problem…………..…………………………………………….………….77
4.3 System response times...……………………………………………….……………77
Chapter 5: Conclusion and future works……………………………………….……………..82
Bibliography...………………………………………………………………………………...84
參考文獻 Aki, K., & Richards, P. G., Quantitative seismology., University Science Books, 2002.
Aster, R. C., Borchers, B., & Thurber, C. H., Parameter estimation and inverse problems., Academic Press, 2013.
Barker, J. S., & Langston, C. A., 1982. Moment tensor inversion of complex earthquakes. Geophys. J. Int., 68(3), 777-803.
Blaser, L., Krüger, F., Ohrnberger, M., & Scherbaum, F., 2010. Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull. seism. Soc. Am., 100(6), 2914-2926.
Chen, Y. L. & Shin, T. C., 1998. Study of the earthquake location of 3-D velocity structure in Taiwan area, Meteor. Bull., 42, 135–169.
Ching, K. E., Rau, R. J., & Zeng, Y., 2007. Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements. J. Geophys. Res.,112(B6).
Dreger, D. S., & Helmberger, D. V., 1993. Determination of source parameters at regional distances with three‐component sparse network data. J. Geophys. Res., 98(B5), 8107-8125.
Dreger, D. S., Tkalčić, H., & Johnston, M., 2000. Dilational processes accompanying earthquakes in the Long Valley Caldera. Science, 288(5463), 122-125
Duputel, Z., Kanamori, H., Tsai, V. C., Rivera, L., Meng, L., Ampuero, J. P., & Stock, J. M., 2012. The 2012 Sumatra great earthquake sequence. Earth Planet. Sci. Lett., 351, 247-257.
Duputel, Z., Rivera, L., Kanamori, H., Hayes, G. P., Hirshorn, B., & Weinstein, S., 2011. Real-time W phase inversion during the 2011 off the Pacific coast of Tohoku Earthquake. Earth, planets and space, 63(7), 535-539.
Duputel, Z., Tsai, V. C., Rivera, L., & Kanamori, H., 2013. Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics. Earth Planet. Sci. Lett., 374, 92-100.
Dziewonski, A. M., Chou, T. A., & Woodhouse, J. H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86(B4), 2825-2852.
Ekström, G., & Engdahl, E. R., 1989. Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutian Islands, Alaska. J. Geophys. Res., 94(B11), 15499-15519.
Ekström, G., Dziewoński, A. M., Maternovskaya, N. N., & Nettles, M., 2005. Global seismicity of 2003: Centroid–moment-tensor solutions for 1087 earthquakes. Phys. Earth Planet. Inter., 148(2), 327-351.
Fitch, T. J., McCowan, D. W., & Shields, M. W., 1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes. J. Geophys. Res., 85(B7), 3817-3828.
Fukuyama, E., M. Ishida, D. S. Dreger & H. Kawai, 1998, Automated seismic moment tensor determination by using on-line broadband seismic waveforms, Zisin, 149-156 (in Japanese with English abstract).
Gilbert, F., 1970. Excitation of lhe normal modes of the earth by earthquake sources Geophys. J. R. Astr. Soc. 22,223-226.
Guilhem, A., & Dreger, D. S., 2011. Rapid detection and characterization of large earthquakes using quasi‐finite‐source Green′s functions in continuous moment tensor inversion. Geophys. Res. Lett., 38(13).
Hashimoto, C., Noda, A., Sagiya, T., & Matsu’ura, M., 2009. Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion. Nature Geoscience, 2(2), 141-144.
Hsu, Y. J., Ando, M., Yu, S. B., & Simons, M., 2012. The potential for a great earthquake along the southernmost Ryukyu subduction zone. Geophys. Res. Lett., 39(14).
Hsu, Y. J., Yu, S. B., & Chen, H. Y., 2009. Coseismic and postseismic deformation associated with the 2003 Chengkung, Taiwan, earthquake.Geophys. J. Int., 176(2), 420-430.
Hu, J. C., Cheng, L. W., Chen, H. Y., Wu, Y. M., Lee, J. C., Chen, Y. G., Lin, K. C., Rau, R. J., Hao, K. C., Chen, H. H., Yu, S. B., & Angelier, J., 2007. Coseismic deformation revealed by inversion of strong motion and GPS data: the 2003 Chengkung earthquake in eastern Taiwan. Geophys. J. Int., 169(2), 667-674.
Ji, C., Helmberger, D. V., Song, T. R., Ma, K. F., & Wald, D. J., 2001, Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 28(23), 4379– 4382.
Jost, M. U. & Herrmann, R. B., 1989. A student’s guide to and review of moment tensors. Seismol. Res. Lett., 60(2), 37-57.
Kanamori, H. & Rivera, L., 2008. Source inversion of W phase: speeding up seismic tsunami warning. Geophys. J. Int., 175(1), 222-238.
Kanamori, H., 2005. Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci., 33, 195-214.
Kao, H. & Jian, P. R., 2001. Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data, Tectonophysics, 333, 179–198.
Kao, H., & Jian, P. R., 2001. Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data. Tectonophysics, 333(1), 179-198.
Kao, H., Jian, P. R., Ma, K. F., Huang, B. S. & Liu, C. C., 1998. Moment tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision, Geophys. Res. Lett., 25, 3619–3622.
Kao, H., Liu, Y. H., Liang, W. T. & Chen, W. P., 2002. Source parameters of regional earthquakes in Taiwan: 1999–2000 including the Chi-Chi earthquake sequence, Terr. Atmos. Ocean. Sci., 13, 279–298.
Kawakatsu, H., 1998. On the realtime monitoring of the long-period seismic wavefield, Bull. Earthq. Res. Inst., 73, 267–274.
Kikuchi, M., & Kanamori, H., 1982. Inversion of complex body waves. Bull. seism. Soc. Am., 72(2), 491-506.
Kikuchi, M., & Kanamori, H., 1986. Inversion of complex body waves-II. Phys. Earth Planet. Inter., 43(3), 205-222.
Kikuchi, M., & Kanamori, H., 1991. Inversion of complex body waves—III. Bull. seism. Soc. Am., 81(6), 2335-2350.
Knopoff, L., & Randall, M. J., 1970. The compensated linear‐vector dipole: A possible mechanism for deep earthquakes. J. Geophys. Res.,75(26), 4957-4963.
Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S. I., Satake, K., Fujii, Y., Miyake, H., Sakai, S., Yamanaka, Y., & Okada, T. (2011). A unified source model for the 2011 Tohoku earthquake. Earth Planet. Sci. Lett., 310(3), 480-487.
Komatitsch, D., & Tromp, J., 1999. Introduction to the spectral element method for three‐dimensional seismic wave propagation. Geophys. J. Int., 139(3), 806-822.
Lee, S. J., and K. F. Ma, 2000, Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the inversion of teleseismic data, Terr. Atmos. Oceanic Sci., 11, 591– 608.
Lee, S. J., Huang, B. S., Ando, M., Chiu, H. C., & Wang, J. H., 2011. Evidence of large scale repeating slip during the 2011 Tohoku‐Oki earthquake.Geophys. Res. Lett., 38(19).
Lee, S. J., Liang, W. T., Cheng, H. W., Tu, F. S., Ma, K. F., Tsuruoka, H., Kawakatsu, H., Huang, B. S., & Liu, C. C., 2014. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan. Geophys. J. Int., 196(1), 432-446.
Lee, S. J., Liu, Q., Tromp, J., Komatitsch, D., Liang, W. T., & Huang, B. S., 2014. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes. J. Asian Earth Sci., 87, 56-68.
Lee, S. J., Ma, K. F., & Chen, H. W., 2006. Three‐dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi‐Chi, Taiwan, earthquake. J. Geophys. Res.,111(B11).
Liang, W. T., Liu, Y. H. & Kao, H., 2003. Source parameters of regional earthquakes in Taiwan: January-December, 2001, Terr. Atmos. Ocean. Sci., 14, 249–260.
Liang, W. T., Liu, Y. H. & Kao, H., 2004. Source parameters of regional earthquakes in Taiwan: January-December, 2002, Terr. Atmos. Ocean. Sci., 15, 727–741.
Ma, K. F., C. T. Lee, Y. B. Tsai, T. C. Shin, & J. Mori, 1999, The Chi-Chi Taiwan earthquake: Large surface displacements on an inland thrust fault, Eos Trans. AGU, 80, 605, 611.
Menke, W., Geophysical data analysis: discrete inverse theory., Academic press, (2012).
Moore, E. H.. On the reciprocal of the general algebraic matrix, 1920. Bulletin of the American Mathematical Society, 26,394–395.
Mozziconacci, L., Delouis, B., Angelier, J., Hu, J. C., & Huang, B. S., 2009. Slip distribution on a thrust fault at a plate boundary: The 2003 Chengkung earthquake, Taiwan. Geophys. J. Int., 177(2), 609-623.
Saito, T., & Furumura, T., 2009. Three‐dimensional tsunami generation simulation due to sea‐bottom deformation and its interpretation based on the linear theory. Geophys. J. Int., 178(2), 877-888.
Sambridge, M., 1999. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys. J. Int., 138(2), 479-494.
Shearer, P. M., Introduction to seismology., Cambridge University Press, 2009.
Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. J. Geophys. Res., 110(B8).
Tsai, V. C., Nettles, M., Ekström, G., & Dziewonski, A. M., 2005. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys. Res. Lett., 32(17).
Tsuruoka, H., Kawakatsu, H., & Urabe, T., 2009. GRiD MT (grid-based real-time determination of moment tensors) monitoring the long-period seismic wavefield. Phys. Earth Planet. Inter., 175(1), 8-16.
Wallace, T. C., Helmberger, D. V. & Mellman, G. R., 1981. A technique for the inversion of regional data in source parameter studies, J. geophys. Res., 86, 1679–1685.
Wang, D., & Mori, J., 2011. Rupture process of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) as imaged with back-projection of teleseismic P-waves. Earth Planets and Space, 63(7), 603.
Wei, S., Graves, R., Helmberger, D., Avouac, J. P., & Jiang, J., 2012. Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. Earth Planet. Sci. Lett., 333, 91-100.
Yen, Y. T., & Ma, K. F., 2011. Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan.Bull. seism. Soc. Am., 101(2), 464-481.
Zhan, Z., Kanamori, H., Tsai, V. C., Helmberger, D. V., & Wei, S., 2014. Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes. Earth Planet. Sci. Lett., 385, 89-96.
Zhu, L., & Ben-Zion, Y., 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophys. J. Int., 194(2), 839-843.
Zhu, L., & Rivera, L. A., 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int.,148(3), 619-627.
指導教授 李憲忠、馬國鳳
(Shiann-jong Lee、Kuo-fong Ma)
審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明