博碩士論文 101622023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.144.17.45
姓名 廖怡雯(Yi-Wun Liao)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 1909台北歷史地震之地動模擬
(Ground motion simulation of 1909 Taipei historical earthquake)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 1909年4月15日於台北地區深處發生一規模7.3之深源地震,稱為1909台北地震。雖然此地震在當時所造成之傷亡不大,但若一類似事件再發生對於現今台北地區所造成之衝擊仍須被關心與注意,因此本研究使用數值模擬方法模擬1909台北地震,並探討不同震源機制、不同目標規模 (Mw6.8與Mw7.3) 以及不同震央位置之模擬結果在台北地區所產生之地表震動之差異。
本研究首先使用譜元素法 (Spectral element method) 模擬1909台北地震對台北地區所造成之地表震動。根據前人研究所重定位之震源位置以及其所提出1909台北地震可能之震源機制解,我們假設此地震有兩種破裂模式:點震源破裂模式與有限斷層破裂模式。在點震源破裂的假設之下,伸張型震源機制解 (δ= 20°, λ= -90°, φ= 90°) 較隱沒帶類型震源機制解造成較高之地表震動,而兩者皆在台北盆地西部有較高之PGV (Peak ground velocity) 值分布。而有限斷層假設之模擬結果,相較於擁有相同震源機制解(伸張型震源機制解)之點震源破裂假設之結果,在台北盆地內PGV高值分布較廣且有較長震動時間。
除了使用譜元素法模擬台北地震可能造成的地表震動外,本研究亦使用混合式的模擬方法,在分別使用譜元素法以及經驗格林函數法 (Empirical Green’s function method) 模擬低頻與高頻部分地震波後,將兩者結合得到寬頻段地震波資訊。本研究選擇2013年10月11日發生在台北地區之下,芮氏規模4.9之深源地震 (深度143.8公里) 作為經驗格林函數,將寬頻測站網之紀錄分別由芮氏規模4.9 (中央氣象局) 和地震矩規模4.2 (RMT:Real-time moment tensor monitoring system) 修正至目標規模。台北測候所之地震報告早期地震測站台北(TAP)與基隆(KEE)站之觀測PGA (Peak ground acceleration) 分別為59.3以及67.0 gal。而本研究模擬結果顯示,模擬目標規模為Mw7.3且應力降較高(100 bars)之假設之模擬結果(TAPB/TAP:59.9 gal;WFSB/KEE:140.4 gal)與文獻紀錄之觀測值較符合,1909台北地震之規模可能高達Mw7.3。在分析地動值與地動搖晃時間之結果中,台北盆地內之測站(TAPB)地動值並非最高,但卻有較長之搖晃時間。
摘要(英) The 1909 Taipei earthquake (M6.8) occurred beneath the Taipei Metropolitan Area (TMA), the possible seismic hazard similar to the 1909 Taipei earthquake would require special attention. According to the hypocenter relocated from historical archived travel times of the 1909 Taipei earthquake by Kanamori et. al (2012), we simulated ground motions in TMA by using Spectral Element Method (SEM). A 3D velocity structure with topography and sediment layers in Taipei basin was also included in the simulation.
As the results of point-source simulations, the tension type mechanism may cause larger ground motions than the subduction zone type mechanism. The higher peak-ground-motion values occurred in the western part of Taipei basin with both two types of focal mechanisms. This distribution might correspond to the thicker sediment layers in the western part of the basin. The finite fault simulation showed that the high PGV area spread wider than the results from point-source assumption, and the coda waves became more obvious and caused longer shaking duration at station TAP than point-source assumption with the same focal mechanism.
SEM could provide us good prediction of low frequency ground motions, however, for real earthquakes, waveforms consist of broad frequency band signals. In order to obtain the information in a broad frequency band we simulated waveforms with hybrid method, which is a combination of SEM and empirical Green’s function method (EGFM). For higher frequency components, we chose a recently happened deep event (2013/10/11 M4.9 Depth:143.8 km) in Taipei area as the empirical Green’s function for the 1909 Taipei earthquake. We corrected the amplitude of the broadband records with hypocentral distance from depth 143.8km to 75km and modified the magnitude from ML4.9 (CWB) and Mw4.2 (RMT) to target magnitude (Mw6.8 and Mw7.3) by using EGFM. An east-dipping (δ=344°, λ=57°, φ=103°) finite fault was considered in the SEM simulation to obtain the lower frequency components. We also moved the hypocenter to the relocated hypocenter from Kanamori et al. (2012) and simulated both higher and lower frequency components.
By combining the time series of lower (SEM) and higher (EGFM) frequency components, the model of modifying the magnitude from Mw4.2 to target magnitudes (Mw6.8 and Mw7.3) has more reasonable PGA values and response spectra curves than from ML4.9 to target magnitude (Mw6.8 and Mw7.3). The observed PGA values from literature are 59.3 gal at station TAP and 67.0 gal at station KEE. According to the simulation results, the PGA values (TAPB/TAP:59.9 gal;WSFB/KEE:140.4 gal) from the model with target magnitude Mw7.3 and higher stress drop are closest to the observed values. For the analysis of strong shaking durations and PGA values, the station inside Taipei basin (TAPB) has lower PGA values but longer strong shaking durations.
關鍵字(中) ★ 1909台北地震
★ 譜元素法
★ 經驗格林函數法
★ 混合式模擬法
關鍵字(英) ★ 1909 Taipei earthquake
★ Spectral element method
★ Empirical Green′s function method
★ Hybrid simulation method
論文目次 中文摘要 ……………………………………………………………………………. I
英文摘要 …………………………………………………….……………………… III
致謝 …………………………………………………………………………….. V
目錄 ……………………………………………………………………………. VI
第一章 緒論 ………………………………………………………………………………….1
1.1研究動機與目的 …………………………………………………….............................1
1.2文獻回顧 …………………………………………………………….............................2
1.1.1 1909台北地震震源特性研究..…………………………………………………….2
1.1.2 1909台北地震之地動紀錄……………………….………......................................2
1.1.3台北盆地相關地動模擬研究………………………………………………………3
1.3台北盆地地質概述….…………………………………………………………………..3
1.4本文範疇與內容………………………………………………………………………...5
第二章 地動模擬方法 ……………………………………………………………………...17
2.1 譜元素法 ……………………………………………………………………………..17
2.1.1 台灣北部地區三維速度模型與網格建構 ……………………………………...17
2.1.2 1909台北地震情境地震模擬假設 ……………………………………………...18
2.2 混合式模擬 …………………………………………………………………………19
2.2.1 高頻部分地動模擬-經驗格林函數法 ………………………………………...19
2.2.2 低頻部分地動模擬-譜元素法
2.3 混合適模擬模型建立 ………………………………………………………………23
第三章 地動模擬結果 ……………………………………………………………………...40
3.1 譜元素法模擬結果 …………………………………………………………………..40
3.1.1 點震源假設模擬結果比較 ……………………………………………………...40
3.1.2 點震源假設與有限斷層假設模擬結果比較 …………………………………...40
3.2 混合式模擬法模擬結果 ……………………………………………………………..41
3.2.1 不同小地震規模來源之混和式模擬結果 ……………………………………...41
3.2.2 將目標規模調整至Mw7.3 之混和式模擬結果 ……………………………….43
3.2.3 震央位於1909 台北地震震央之模擬結果 ……………………………………43
第四章 討論 ………………………………………………………………………………...63
4.1 混合式方法模擬結果與1909 台北地震之地動紀錄 ……………………………...63
4.2 混合式方法模擬結果與強地動衰減式預估值………………………………………64
4.2.1 模擬結果與PGA 衰減式 ………………………………………………………64
4.2.2 模擬反應頻譜與SA 衰減式 …………………………………………………...65
4.3 混合式方法模擬結果之地動搖晃時間與地動值 …………………………………..66
第五章 結論 ..…………..…………………………………………………………………..77
參考文獻 …………………………………………………………………………………….78
附錄(A) ………………………………………………………………………………………81
附錄(B) ………………………………………………………………………………………83
參考文獻 Aki, K., 1967. Scaling law of seismic spectrum: Journal of Geophysical Research, 72, 1217-1231.
Bour, M. and Cara, M., 1997. Test of a simple empirical Green′s function method on moderate-sized earthquakes: Bulletin of the Seismological Society of America, 87, 668-683.
Chen, K., Huang, W., and Wang, J., 2007. Relationships among magnitudes and seismic moment of earthquakes in the Taiwan region: Terrestrial Atmospheric And Oceanic Sciences, 18, 951-973.
Gutenberg, B. and Richter, C. F., 1965. Seismicity of the earth and associated phenomena, Hafner New York.
Hartzell, S. H., 1978. Earthquake aftershocks as Green′s functions: Geophysical Research Letters, 5, p. 1-4.
Hauksson, E., Teng, T.-L., and Henyey, T. L., 1987. Results from a 1500 m deep, three-level downhole seismometer array: site response, low Q values, and fmax: Bulletin of the Seismological Society of America, 77, 1883-1904.
Irikura, K., 1986. Prediction of strong acceleration motion using empirical Green’s function: Proc. 7th Japan Earthquake Symp., 151-156.
Kanamori, H., 1977. The energy release in great earthquakes: Journal of Geophysical Research, 82, 2981-2987.
Kanamori, H., Lee, W. H. K., and Ma, K.-F., 2012. The 1909 Taipei earthquake-implication for seismic hazard in Taipei: Geophysical Journal International, 191, 126-146.
Komatitsch, D. and Tromp, J., 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation: Geophysical Journal International, 139, 806-822.
Komatitsch, D. and Vilotte, J.-P., 1998. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures: Bulletin of the seismological society of America, 88, 368-392.
Lee, S.-J., 2012. Real-Time Moment Tensor Monitoring System: http://rmt.earth.sinica.edu.tw/.
Lee, S. J., Chen, H. W., Liu, Q., Komatitsch, D., Huang, B. S., and Tromp, J., 2008. Three-Dimensional Simulations of Seismic-Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method: Bulletin of the Seismological Society of America, 98, 253-264.
Midorikawa, S., 1993. Semi-empirical estimation of peak ground acceleration from large earthquakes: Tectonophysics, 218, 287-295.
Miyake, H., Iwata, T., and Irikura, K., 2003. Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area: Bulletin of the Seismological Society of America, 93, 2531-2545.
Reasenberg, P. and Oppenheimer, D., 1999. FPFIT: http://earthquake.usgs.gov/research/software/.
Taihoku Meteorological Observatory, 1936. Report of the Severe Hsinchu-Taichung Earthquake of April 21, 1935.
Teng, L. S., Lee, C., Peng, C.-H., Chen, W., and Chu, C., 2001. Origin and geological evolution of the Taipei basin, northern Taiwan: Western Pacific Earth Sciences, 1, 115-142.
Wang, C.-Y., Lee, Y.-H., Ger, M.-L., and Chen, Y.-L., 2004. Investigating subsurface structures and P-and S-wave velocities in the Taipei basin: Terrestrial Atmospheric and Oceanic Sciences, 15, 609-628.
Wu, Y.-M., Chang, C.-H., Zhao, L., Shyu, J. B. H., Chen, Y.-G., Sieh, K., and Avouac, J.-P., 2007. Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations: Journal of Geophysical Research, 112, B8, 312.
Yen, Y.-T., 2012. Synthesis of high-frequency ground motion using Empirical Greren′s Function: Workshop on Seismic Hazard Assessment Issues in the island arc of Taiwan and Japan.(PPT)
王以旻,2013,山腳斷層情境地震模擬之研究:中國文化大學理學院地學研究所地質組,碩士論文.
楊世緯,2012,利用經驗隔鄰函數法探討板塊介面及內部地震對台灣北部地區強地動之影響:中央大學地球科學系,碩士論文.
鄧屬予,2006,台北盆地之地質研究:Western Pacific Earth Sciences, 6, 1--12.
鄧屬予、袁彼得、陳培源,1995,八十四年度台北盆地地下地質與工程環境綜合調查研究-地層及沉積環境研究:經濟部中央地質調查所報告第84-008 號,共61 頁。.
顏銀桐,2011,台灣地區有限斷層錯動量分布尺度分析及模擬:國立中央大學地球科學系,博士論文.
指導教授 馬國鳳、李憲忠(Kuo-Fong Ma Shiann-Jong Lee) 審核日期 2014-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明