博碩士論文 101226059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.139.67.228
姓名 陳煜升(Yu-sheng Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究
(Enhancing photo-thermal conversion efficiency of solar selective absorber by optical admittance loci)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究
★ 軟性電子阻水氣膜之有機層組成研究★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性
★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究
★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器
★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件
★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統
★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器
★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在聚光型太陽熱能發電系統(concentrating solar power system, CSP)中,太陽能選擇性吸收膜是提升光熱轉換效率的關鍵,本實驗利用導納軌跡法的概念設計金屬-介電質堆疊的結構,形成在太陽能波段有廣波域的吸收以及紅外線波段低發射率的高效率的吸收膜。材料使用Nb2O5、SiO2、Mo,並搭配橢圓儀、穿透光譜對材料的光學常數進行分析。
膜層結構:Substrate/ Mo / Nb2O5/ Mo/ Nb2O5/ SiO2,設計在太陽能波段400~1200nm的吸收率有98%以上,在溫度300K~600K的發射率可以在10%以下。實際製作的結果在400~1200nm波段的吸收率也可達97%以上,在溫度300K~600K的發射率在8%~12%。在後續的熱穩定性測試中,膜層經過500℃的烘烤後吸收率提升0.24%。
摘要(英) In concentrating solar power system, Solar selective absorber is the key of enhancing photo-thermal conversion efficiency. In this research, we design metal-dielectric stack structure base on optical admittance loci, and the structure has broadband absorption in solar energy region and low emissivity in infrared region. The metal layer is Mo, and the dielectric layers are Nb2O5 and SiO2. Also, we use ellipsometer and transmittance spectrum to analyze the optical constant of materials.
The structure Substrate/ Mo / Nb2O5/ Mo/ Nb2O5/ SiO2 is designed to have absorption higher than 98% in solar energy spectrum of 400~1200nm and emissivity lower than 10% in infrared region at the temperature of 300K~600K. The fabrication result also has absorption higher than 97% and emissivity about 8%~12%. Then, the solar selective absorber has also shown a good thermal stability up to the temperature of 500℃ and the absorption has risen 0.24%.
關鍵字(中) ★ 太陽能選擇性吸收膜
★ 光學導納軌跡法
★ 金屬-介電質堆疊
關鍵字(英) ★ Solar selective absorber
★ optical admittance loci
★ metal-dielectric stack
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 論文架構 3
第二章 太陽能選擇性吸收膜係與光學薄膜理論[18] 4
2-1 太陽能選擇性吸收膜表面原理 4
2-2 單層膜之反射與透射 8
2-3 導納軌跡法 11
2-3-1 單層膜之導納軌跡 11
2-3-2 金屬膜之導納軌跡 13
第三章 實驗方法及設備 16
3-1 實驗流程 16
3-2 反應式直流(DC)脈衝磁控濺鍍 16
3-3 橢圓偏振儀 18
3-4 可見光-近紅外光譜儀 20
3-5 霍氏轉紅外光譜儀(Fourier-Transform Infrared Spectrometer, FTIR) 20
3-6 Macleod光學模擬軟體 20
第四章 太陽能選擇性吸收膜設計與製作 22
4-1 太陽能選擇性吸收膜設計 22
4-2太陽能選擇性吸收膜製作與分析 34
4-2-1單層膜鍍製與光學常數分析 35
4-2-2太陽能選擇性吸收膜製作 43
4-2-3太陽能選擇性吸收膜的製程參數與結果 45
4-2-4 探討模擬與製作結果的差異性 47
4-3 吸收膜熱穩定性測試 49
第五章 結論與未來展望 51
Reference 53
參考文獻 [1] M. Lira-Cantú, A. Morales Sabio, A. Brustenga, and P. Gómez-Romero, "Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells," Solar Energy Materials and Solar Cells, vol. 87, pp. 685-694, 2005.
[2] Moise, R. Cloots, and A. Rulmont, "Study of the electrochemical synthesis of selective black coatings absorbing solar energy," International Journal of Inorganic Materials, vol. 3, pp. 1323-1329, 2001.
[3] A. Rakhshani and J. Varghese, "Galvanostatic deposition of thin films of cuprous oxide," Solar energy materials, vol. 15, pp. 237-248, 1987.
[4] C. Anandan, V. William Grips, K. Rajam, V. Jayaram, and P. Bera, "Investigation of surface composition of electrodeposited black chrome coatings by X-ray photoelectron spectroscopy," Applied surface science, vol. 191, pp. 254-260, 2002.
[5] Z. Crnjak Orel, M. Klanjšek Gunde, A. Lenček, and N. Benz, "The preparation and testing of spectrally selective paints on different substrates for solar absorbers," Solar energy, vol. 69, pp. 131-135, 2001.
[6] Z. Crnjak Orel and M. Klanjšek Gunde, "Spectrally selective paint coatings: Preparation and characterization," Solar energy materials and solar cells, vol. 68, pp. 337-353, 2001.
[7] J. V. Iyer, S. Gadgil, R. Thangaraj, A. Sharma, B. Gupta, and O. Agnihotri, "Spectrally selective copper oxide films," Applied Energy, vol. 14, pp. 65-75, 1983.
[8] G. Carver and E. Chain, "CVD molybdenum films of high infrared reflectance and significant solar absorptance," Le Journal de Physique Colloques, vol. 42, pp. C1-203-C1-211, 1981.
[9] Q. C. Zhang and D. R. Mills, "New cermet film structures with much improved selectivity for solar thermal applications," Applied physics letters, vol. 60, pp. 545-547, 1992.
[10] Q. C. Zhang and D. R. Mills, "Very low‐emittance solar selective surfaces using new film structures," Journal of applied physics, vol. 72, pp. 3013-3021, 1992.
[11] V. Teixeira, E. Sousa, M. Costa, C. Nunes, L. Rosa, M. Carvalho, et al., "Spectrally selective composite coatings of Cr–Cr< sub> 2 O< sub> 3 and Mo–Al< sub> 2 O< sub> 3 for solar energy applications," Thin Solid Films, vol. 392, pp. 320-326, 2001.
[12] Y. Zhiqiang and G. Harding, "Optical properties of dc reactively sputtered thin films," Thin Solid Films, vol. 120, pp. 81-108, 1984.
[13] A. Wazwaz, J. Salmi, H. Hallak, and R. Bes, "Solar thermal performance of a nickel-pigmented aluminium oxide selective absorber," Renewable Energy, vol. 27, pp. 277-292, 2002.
[14] M. Farooq and I. A. Raja, "Optimisation of metal sputtered and electroplated substrates for solar selective coatings," Renewable Energy, vol. 33, pp. 1275-1285, 2008.
[15] K. Gelin, T. Boström, and E. Wäckelgård, "Infrared reflectance of direct current magnetron sputter deposited films of Ni93V7, Cu89Ni10Fe1(Mn) and Cu," Thin Solid Films, vol. 437, pp. 25-33, 2003.
[16] Q.-C. Zhang, "Stainless-steel–AlN cermet selective surfaces deposited by direct current magnetron sputtering technology," Solar energy materials and solar cells, vol. 52, pp. 95-106, 1998.
[17] 經濟部能源局, 2007 年能源科技研究發展白皮書: 中華民國政府出版品, 2007.
[18] 李正中, 薄膜光學與鍍膜技術: 藝軒圖書, 2012.
[19] C. E. Kennedy, Review of mid-to high-temperature solar selective absorber materials vol. 1617: National Renewable Energy Laboratory Golden Colorado, 2002.
[20] Q.-C. Zhang, "Recent progress in high-temperature solar selective coatings," Solar Energy Materials and Solar Cells, vol. 62, pp. 63-74, 4/15/ 2000.
[21] G. A. Nyberg, H. Craighead, and R. Buhrman, "Surface roughness and thermal stability of graded cermet photothermal absorber coatings with very high absorptivities," Thin Solid Films, vol. 96, pp. 185-190, 1982.
[22] X. Xiao, G. Xu, B. Xiong, D. Chen, and L. Miao, "The film thickness dependent thermal stability of Al2O3: Ag thin films as high-temperature solar selective absorbers," Journal of Nanoparticle Research, vol. 14, pp. 1-11, 2012.
[23] N. Selvakumar, H. C. Barshilia, K. Rajam, and A. Biswas, "Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfO< sub> x/Mo/HfO< sub> 2 solar selective absorbers," Solar Energy Materials and Solar Cells, vol. 94, pp. 1412-1420, 2010.
[24] N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Optics express, vol. 17, pp. 22800-22812, 2009.
[25] W.-X. Zhou, Y. Shen, E.-T. Hu, Y. Zhao, M.-Y. Sheng, Y.-X. Zheng, et al., "Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability," Optics express, vol. 20, pp. 28953-28962, 2012.
[26] N. P. Sergeant, M. Agrawal, and P. Peumans, "High performance solar-selective absorbers using coated sub-wavelength gratings," Optics express, vol. 18, pp. 5525-5540, 2010.
[27] S. Karthick Kumar, S. Suresh, S. Murugesan, and S. P. Raj, "CuO thin films made of nanofibers for solar selective absorber applications," Solar Energy, vol. 94, pp. 299-304, 2013.
[28] M. Joly, Y. Antonetti, M. Python, M. Gonzalez, T. Gascou, J.-L. Scartezzini, et al., "Novel black selective coating for tubular solar absorbers based on a sol–gel method," Solar Energy, vol. 94, pp. 233-239, 2013.
指導教授 陳彥宏、郭倩丞(Yen-Hung Chen Chien-Cheng Kuo) 審核日期 2014-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明