參考文獻 |
[1] M. Lira-Cantú, A. Morales Sabio, A. Brustenga, and P. Gómez-Romero, "Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells," Solar Energy Materials and Solar Cells, vol. 87, pp. 685-694, 2005.
[2] Moise, R. Cloots, and A. Rulmont, "Study of the electrochemical synthesis of selective black coatings absorbing solar energy," International Journal of Inorganic Materials, vol. 3, pp. 1323-1329, 2001.
[3] A. Rakhshani and J. Varghese, "Galvanostatic deposition of thin films of cuprous oxide," Solar energy materials, vol. 15, pp. 237-248, 1987.
[4] C. Anandan, V. William Grips, K. Rajam, V. Jayaram, and P. Bera, "Investigation of surface composition of electrodeposited black chrome coatings by X-ray photoelectron spectroscopy," Applied surface science, vol. 191, pp. 254-260, 2002.
[5] Z. Crnjak Orel, M. Klanjšek Gunde, A. Lenček, and N. Benz, "The preparation and testing of spectrally selective paints on different substrates for solar absorbers," Solar energy, vol. 69, pp. 131-135, 2001.
[6] Z. Crnjak Orel and M. Klanjšek Gunde, "Spectrally selective paint coatings: Preparation and characterization," Solar energy materials and solar cells, vol. 68, pp. 337-353, 2001.
[7] J. V. Iyer, S. Gadgil, R. Thangaraj, A. Sharma, B. Gupta, and O. Agnihotri, "Spectrally selective copper oxide films," Applied Energy, vol. 14, pp. 65-75, 1983.
[8] G. Carver and E. Chain, "CVD molybdenum films of high infrared reflectance and significant solar absorptance," Le Journal de Physique Colloques, vol. 42, pp. C1-203-C1-211, 1981.
[9] Q. C. Zhang and D. R. Mills, "New cermet film structures with much improved selectivity for solar thermal applications," Applied physics letters, vol. 60, pp. 545-547, 1992.
[10] Q. C. Zhang and D. R. Mills, "Very low‐emittance solar selective surfaces using new film structures," Journal of applied physics, vol. 72, pp. 3013-3021, 1992.
[11] V. Teixeira, E. Sousa, M. Costa, C. Nunes, L. Rosa, M. Carvalho, et al., "Spectrally selective composite coatings of Cr–Cr< sub> 2 O< sub> 3 and Mo–Al< sub> 2 O< sub> 3 for solar energy applications," Thin Solid Films, vol. 392, pp. 320-326, 2001.
[12] Y. Zhiqiang and G. Harding, "Optical properties of dc reactively sputtered thin films," Thin Solid Films, vol. 120, pp. 81-108, 1984.
[13] A. Wazwaz, J. Salmi, H. Hallak, and R. Bes, "Solar thermal performance of a nickel-pigmented aluminium oxide selective absorber," Renewable Energy, vol. 27, pp. 277-292, 2002.
[14] M. Farooq and I. A. Raja, "Optimisation of metal sputtered and electroplated substrates for solar selective coatings," Renewable Energy, vol. 33, pp. 1275-1285, 2008.
[15] K. Gelin, T. Boström, and E. Wäckelgård, "Infrared reflectance of direct current magnetron sputter deposited films of Ni93V7, Cu89Ni10Fe1(Mn) and Cu," Thin Solid Films, vol. 437, pp. 25-33, 2003.
[16] Q.-C. Zhang, "Stainless-steel–AlN cermet selective surfaces deposited by direct current magnetron sputtering technology," Solar energy materials and solar cells, vol. 52, pp. 95-106, 1998.
[17] 經濟部能源局, 2007 年能源科技研究發展白皮書: 中華民國政府出版品, 2007.
[18] 李正中, 薄膜光學與鍍膜技術: 藝軒圖書, 2012.
[19] C. E. Kennedy, Review of mid-to high-temperature solar selective absorber materials vol. 1617: National Renewable Energy Laboratory Golden Colorado, 2002.
[20] Q.-C. Zhang, "Recent progress in high-temperature solar selective coatings," Solar Energy Materials and Solar Cells, vol. 62, pp. 63-74, 4/15/ 2000.
[21] G. A. Nyberg, H. Craighead, and R. Buhrman, "Surface roughness and thermal stability of graded cermet photothermal absorber coatings with very high absorptivities," Thin Solid Films, vol. 96, pp. 185-190, 1982.
[22] X. Xiao, G. Xu, B. Xiong, D. Chen, and L. Miao, "The film thickness dependent thermal stability of Al2O3: Ag thin films as high-temperature solar selective absorbers," Journal of Nanoparticle Research, vol. 14, pp. 1-11, 2012.
[23] N. Selvakumar, H. C. Barshilia, K. Rajam, and A. Biswas, "Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfO< sub> x/Mo/HfO< sub> 2 solar selective absorbers," Solar Energy Materials and Solar Cells, vol. 94, pp. 1412-1420, 2010.
[24] N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Optics express, vol. 17, pp. 22800-22812, 2009.
[25] W.-X. Zhou, Y. Shen, E.-T. Hu, Y. Zhao, M.-Y. Sheng, Y.-X. Zheng, et al., "Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability," Optics express, vol. 20, pp. 28953-28962, 2012.
[26] N. P. Sergeant, M. Agrawal, and P. Peumans, "High performance solar-selective absorbers using coated sub-wavelength gratings," Optics express, vol. 18, pp. 5525-5540, 2010.
[27] S. Karthick Kumar, S. Suresh, S. Murugesan, and S. P. Raj, "CuO thin films made of nanofibers for solar selective absorber applications," Solar Energy, vol. 94, pp. 299-304, 2013.
[28] M. Joly, Y. Antonetti, M. Python, M. Gonzalez, T. Gascou, J.-L. Scartezzini, et al., "Novel black selective coating for tubular solar absorbers based on a sol–gel method," Solar Energy, vol. 94, pp. 233-239, 2013. |