博碩士論文 101226029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.145.52.86
姓名 林達(Ta Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具穿隧結構之反向極化電場氮化銦鎵發光二極體
(Reversed Polarized InGaN Light-Emitting Diodes with a Tunneling Structure)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 量子井與量子點光學性質之模擬
★ 利用二維光子晶體提升氮化鎵發光二極體發光效率之模擬與分析★ 高品質因子與低模態體積光子晶體微共振腔之設計與製作
★ 二維量子點光子晶體雷射模擬與分析★ 成長於(001)矽基板之銻化銦薄膜熱處理研究
★ 矽基板上的氮化鎵異質磊晶術★ 矽基板上的氮化物太陽能電池
★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層
★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究具有反向極化電場的InGaN量子井發光二極體特性,因為此反向極化電場預期會提高量子井導電帶的等效位障,降低電子溢流的機率;同時,AlGaN/GaN電流阻擋層介面之價電帶的凸起會消失,故而增加電洞注入量子井的機率,使發光二極體發光效率提高並改善大電流下效率衰退的現象。
此研究以兩種結構來實現反向極化發光二極體,第一種結構是利用磊晶再成長的方式製作p-side down發光二極體,此結構有p-GaN 阻值太高與電流擁塞嚴重的問題,導致元件操作電壓過大,影響元件光電轉換效率。第二種結構是加入一層穿隧結構的p-side down發光二極體,以解決上述問題。實際製作之元件顯示,在當電流密度提升至60 A/cm2 時,傳統發光二極體與上層n型氮化鎵厚度為150 nm的穿隧發光二極體效率衰退率分別為33.8%與26.3%,確實觀察到效率衰退的改善。將上層n型氮化鎵厚度從150 nm增加到600 nm,會使穿隧發光二極體的操作電壓從10.2 V降到6.7 V,但是增加n型氮化鎵厚度會使材料吸光率增加,導致發光效率較差。未來尚須解決高電壓與材料吸光的問題,才能使光電轉換效率超越傳統發光二極體。
摘要(英) This research is aimed at InGaN quantum well light-emitting diodes (LEDs) with reversed polarization field to reduce efficiency droop issue. Simulation shows that compared with conventional LEDs, reversing the polarization field results in high effective barrier in the conduction band, which reduces electron overflow, and diminished energy spike at the AlGaN/GaN interface in the valence band, which enhances hole injection. These properties would reduce the efficiency droop that often observed on conventional LEDs .
Two approaches to realize LEDs with reversed polarization field have been investigated in this work. One is to grow the LED structure on sapphire starting with the p-side layer. However, high sheet resistance of the p-GaN layer and severe current crowding effect lead to a high on-voltage, i.e. forward voltage at 20 mA, of the LEDs prepared by this approach. The lowest on-voltage observed on the p-side down LEDs is 10.4 V. The other approach is to insert a tunneling structure into the p-side down LEDs. Compared with conventional LEDs, the tunneling LEDs with a 150 nm top n-GaN layer exhibit improved efficiency droop at 60 A/cm2 form 33.8% and 26.3%. However, the on-voltage of tunneling LEDs is still as high as 10.2 V. It can be reduced to 6.7 V by using a 600 nm top n-GaN layer at the expense of light output power. In conclusion, the light absorption and high on-voltage issues must be resolved to achieve wall-plug efficiency better than the conventional LEDs.
關鍵字(中) ★ 發光二極體
★ 效率衰退
★ 反向極化
關鍵字(英)
論文目次 論文摘要 IV
Abstract V
誌謝 VI
目錄 VII
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2氮化物材料結構與特性 2
1.2.1 晶體結構 2
1.2.2 極化效應 3
1.3研究動機與論文架構 9
第二章 反向極化發光二極體結構設計與製作 11
2.1反向極化發光二極體特性模擬 11
2.2結構設計與優缺點分析 16
2.2.1 設計理念與優缺點分析 16
2.2.2 結構設計 18
2.3 反向極化發光二極體製作流程 21
2.3.1 傳統發光二極體製作流程 21
2.3.2 p-side down發光二極體製作流程 23
2.3.3 穿隧發光二極體製作流程 23
第三章 反向極化發光二極體電流散佈分析 25
3.1原理介紹 25
3.1.1 傳輸線模型 25
3.1.2 電流散佈原理 28
3.2 P-side down發光二極體電流散佈分析 31
3.2.1 P-side down發光二極體的I-V特性 31
3.2.2 P-side down發光二極體電流散佈分析 33
3.3具穿隧結構之發光二極體電流散佈分析 40
3.3.1穿隧結構電特性分析 40
3.3.2具穿隧結構之p-side down發光二極體電特性分析 44
3.3.3穿隧發光二極體電流散佈情形 46
第四章 反向極化發光二極體光電特性分析 49
4.1反向極化發光二極體電特性分析 49
4.2反向極化發光二極體光特性分析 53
4.2.1 光激螢光光譜分析 53
4.2.2 電激發螢光光譜分析 56
4.2.3 發光強度與效率分析 58
第五章 結論 63
參考文獻 65
參考文獻 [1] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapor‐deposited single‐crystal‐line GaN,” Appl. Phys. Lett., vol. 15, no. 10, pp. 327-329, 1969.
[2] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys, vol. 31, no. 5A, pp. 1258-1266, 1992.
[3] Y. C. Shen, G. O. Mueller, S. Wananabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, no. 14, pp. 141101-1-141101-3, 2007.
[4] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piperk, Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, no. 18, pp. 183507-1-183507-3, 2007.
[5] K. B. Nam, M. K. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,” Appl. Phys. Lett., vol. 83, no. 5, pp. 878-880, 2003.
[6] N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk and Y. G. Shreter, “Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes,” Appl. Phys. Lett., vol. 96, no. 13, pp. 133502-1-133502-3, 2010.
[7] N. F. Gardnera, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett., vol. 91, no. 24, pp. 243506-1-243506-3, 2007.
[8] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett., vol. 93, no. 4, pp. 041102-1-041102-3, 2008.
[9] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett., vol. 94, no. 1, pp. 011113-1-011113-3, 2009.

[10] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Appl. Phys. Lett., vol. 93, no. 12, pp. 121107-1-121107-3, 2008.
[11] K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys., vol. 101, no. 3, pp. 033104-1-033104-5, 2007.
[12] T. Takayama, M. Yuri, K. Itoh, and J. S. Harris Jr., “Theoretical predictions of unstable two-phase regions in wurtzite group-III-nitride-based ternary and quaternary material systems using modified valence force field model,” J. Appl. Phys., vol. 90, no. 5, pp. 2358-2369, 2001.
[13] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, 1999.
[14] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eick- hoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures,” J. Phys.: Condens. Matter, vol. 14, no. 13, pp. 3399-3434, 2002.
[15] T. Matsuoka, Y. Kobayashi, H. Takahata, T. Mitate, S. Mizuno, A. Sasaki, M. Yoshimoto, T. Ohnishi, and M. Sumiya, “N-polarity GaN on sapphire substrate grown by MOVPE,” Phys. Stat. Sol. (b), vol. 243, no. 7, pp. 1446-1450, 2006.
[16] M. Seelmann-Eggebert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski, “Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire,” Appl. Phys. Lett., vol. 71, no. 18, pp. 2635-2637, 1997.
[17] B. Daudin, J. L. Rouviere, and M. Arlery, “Polarity determination of GaN films by ion channeling and convergent beam electron diffraction,” Appl. Phys. Lett., vol. 69, no. 17, pp. 2480-2482, 1996.
[18] H. Kim, J.M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwanga, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett., vol. 77, no. 12, pp. 1903-1904, 2000.
[19] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys., vol. 90, no. 8, pp. 1903-1904, 2001.

[20] H. Kim, S. J. Park, and H. Hwang, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,” Appl. Phys. Lett., vol. 81, no. 7, pp. 1326-1328, 2002.
[21] S. Krishnamoorthy, D. N. Nath, F. Akyol, P. S. Park, M. Esposto, and S. Rajan, “Polarization-engineered GaN/InGaN/GaN tunnel diodes,” Appl. Phys. Lett., vol. 97, no. 20, pp. 203502-1-203502-3, 2010.
[22] S. W. Lee, D. C. Oh, H. Goto, J. S. Ha, H. J. Lee, T. Hanada, M. W. Cho, and T. Yaoc, “Origin of forward leakage current in GaN-based light-emittng devices,” Appl. Phys. Lett., vol. 89, no. 13, pp. 132117-1-132117-3, 2006.
[23] S. N. Lee, H. S. Paek, J. K. Son, H. Kim, K. K. Kim, K. H. Ha, O. H. Nam, and Y. Park, “Effects of Mg dopant on the degradation of InGaN multiple quantum wells in AlInGaN-based light emitting devices,” J Electroceram vol. 23, no. 2-4, pp. 406-409, 2009.
[24] D. A. Meller, D. S. Chemla, T. C. Damen, A. C. Gross, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect,” Phys. Rev. Lett., vol. 53, pp. 2173–2176, 1984.
[25] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett., vol. 70, no. 8, pp. 981–983, 1997.
指導教授 綦振瀛、賴昆佑 審核日期 2014-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明