參考文獻 |
[1] I. L. Aleiner, K. B. Efetov, “Effect of Disorder on Transport in Graphene”, Phys. Rev. Lett, 97, 236801, 2006.
[2] E. H. Hwang, S. Adam and S. Das Sarma ,” Carrier Transport in two-Dimensional Graphene Layers”, Phys. Rev. Lett, 98, 186806, 2007.
[3] Jian-Hao Chen, W. G. Cullen, C. Jang, et al, “Defect Scattering in Graphene”, Phys. Rev. Lett, 102, 236805, 2009.
[4] Richard Balog, Bjarke Jørgensen and Louis Nilsson, et al, “Bandgap opening in graphene induced by patterned hydrogen adsorption”, Nat.Mater, 9, 315, 2010.
[5] Pablo A. Denis and Federico Iribarne, “Comparative Study of Defect Reactivity in Graphene”, J. Phys. Chem. C, 117,19048,2013.
[6] Jannik C. Meyer, C. Kisielowski, R. Erni, et al, “Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes”, Nano. Lett, 8, 3582, 2008.
[7] Jie Ma, Dario Alfè, Angelos Michaelides, et al, “Stone-Wales defects in graphene and other planar sp2-bonded materials”, Phys. Rev. B, 80, 033407, 2009.
[8] Matthias Batzill, “The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects”, Surface Science Reports, 67, 83, 2012.
[9] Florian Banhart, Jani Kotakoski and Arkady V. Krasheninnikov, “Structural Defects in Graphene”, ACS Nano, 5, 1, 2011.
[10] L. Li, S. Reich, J. Robertson, “Defect energies of graphite: Density-functional calculations”, Phys. Rev. B, 72, 184109, 2005.
[11] O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, et al,” Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation”, Phys. Rev. B, 81, 153401, 2010.
[12] Ovidiu Cretu, Arkady V. Krasheninnikov, Julio A. Rodrı´guez-Manzo, et al, “Migration and Localization of Metal Atoms on Strained Graphene”, Phys. Rev. Lett, 105, 196102, 2010.
[13] P.O. Lehtinen, A. S. Foster, A. Ayuela et al, “Magnetic Properties and Diffusion of Adatoms on a Graphene Sheet”, Phys. Rev. Lett, 91, 1, 2003.
[14] Zdeneˇk Sofer, Petr Sˇimek and Martin Pumera, ” Complex organic molecules are released during thermal reduction of graphite oxides”, Phys.Chem. Chem. Phys, 15, 9257, 2013.
[15] Phaedon Avouris, Tobias Hertel and Richard Martel, “Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication”, Appl. Phys. Lett , 71, 285, 1997.
[16] T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen and L. Ley, “Nanometer-scale field-induced oxidation of Si (111):H by a conducting-probe scanning force microscope: Doping dependence and kinetics”, Appl. Phys. Lett, 67,3144,1995.
[17] Emmanuel Dubois and Jean-Luc Bubendorff, “Kinetics of scanned probe oxidation: Space-charge limited growth”, Journal of Applied Physics, 87, 8148, 2000.
[18] Y.-R. Ma, C. Yu, Y.-D. Yao, Y. Liou and S.-F. Lee, “Tip-induced local anodic oxidation on the native SiO2 layer of Si.111 using an atomic force microscope”, Phys. Rev. B, 64, 195324, 2001.
[19] S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa and T. Machida, “Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope”, Appl. Phys. Lett.,94, 082107, 2009.
[20] Lishan Weng, Liyuan Zhang,Yong P. Chen and L. P. Rokhinson, “Atomic force microscope local oxidation nanolithography of graphene”, Appl. Phys. Lett., 93, 093107, 2008.
[21] A.J.M. Giesbers , U. Zeitler , S. Neubeck, F. Freitag , K.S. Novoselov and J.C. Maan, “Nanolithography and manipulation of graphene using an atomic force microscope”, Solid State Communications, 147, 366, 2008.
[22] Ik-Su Byun, Duhee Yoon, Jin Sik Choi, et al, “Nanoscale Lithography on Monolayer Graphene Using Hydrogenation and Oxidation”, ACS, Nano., 5, 8, 6417, 2011.
[23] Justice M. P. Alaboson , Qing Hua Wang , Joshua A. Kellar ,et al, “Conductive Atomic Force Microscope Nanopatterning of Epitaxial Graphene on SiC(0001) in Ambient Conditions”, Adv. Mater, 23, 2181, 2011.
[24] Min-Chiang Chuang, Hsiao-Mei Chien, Yuan-Hong Chain, Gou-Chung Chi, Sheng-Wei Lee, Wei Yen Woon, Carbon, 54, 336, 2013.
[25] Dresselhaus, M.S., Dresselhaus, G.,Sugihara, K., Spain, I.L. and Goldberg,H.A., Graphite Fibers and Filaments, Springer-Verlag,Berlin,1988.
[26] Dresselhaus, M.S., Dresselhaus, G., Saito, R. and Jorio, “Raman spectroscopy of carbon nanotubes”, Phys. Rep., 409, 47, 2005.
[27] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, et al, “Raman Spectrum of Graphene and Graphene Layers”, Phys. Rev. Lett., 97, 187401, 2006.
[28] L. G. Canc ado, A. Jorio, E. H. Martins Ferreira, et al, “Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies”, Nano Lett, 11, 3190, 2011.
[29] C. Casiraghi, A. Hartschuh, H. Qian, et al, “Raman Spectroscopy of Graphene
Edges”, Nano Lett, 9, 4, 1433, 2009.
[30] Axel Eckmann, Alexandre Felten, Artem Mishchenko, et al, “Probing the Nature of Defects in Graphene by Raman Spectroscopy”, Nano Lett, 12, 3925, 2012.
[31] Axel Eckmann, Alexandre Felten, Ivan Verzhbitskiy, et al, “Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects”, Phys. Rev. B., 88, 035426, 2013.
[32] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, et al, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2”, Appl. Phys. Lett., 99, 122108, 2011.
[33] Jeremy T. Robinson, James S. Burgess, Chad E. Junkermeier, et al, “ Properties of Fluorinated Graphene Films”, Nano Lett, 10, 3001, 2010.
[34] A Felten, A Eckmann, J-J Pireaux, R Krupke and C Casiraghi, “Controlled modification of mono- and bilayer graphene in O2, H2 and CF4 plasmas”, IOP science, 24, 35, 2013.
[35] A. K. Geim, and K. S. Novoselov, “The rise of graphene”, Nat.Mater., 6, 183, 2007.
[36] Cecilia Mattevi, Hokwon Kima, and Manish Chhowalla, “A review of chemical vapour deposition of graphene on copper”, J. Mater. Chem., 21, 3324, 2011.
[37] A. H. Castro Neto, F. Guinea, and N. M. R. Peres, ”Drawing conclusions from graphene”, Physics World, 19, 33, 2006.
[38] Saito,R., Dresselhaus, G., and Dresselhaus, M.S. Physical properties of carbon Nanotubes, Imperial College, London, 1998.
[39] K. S. Kim, Y. Zhao, H. Jang, et al,” Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, 457, 706, 2009.
[40] Soon-Yong Kwon, Cristian V. Ciobanu, Vania Petrova, et al, “Growth of Semiconducting Graphene on Palladium ”, Nano Lett., 9, 12, 3985, 2009.
[41] Peter W. Sutter, Jan-Ingo Flege ,and Eli A. Sutter,” Epitaxial graphene on ruthenium”, Nat.Mater., 7, 406, 2008.
[42] Johann Coraux , Alpha T. N‘Diaye , Carsten Busse , and Thomas Michely,“Structural Coherency of Graphene on Ir(111)”, Nano Lett, 8, 2, 565, 2008
[43] X. Li, W. Cai, J. An, et al,” Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, 324, 1312, 2009
[44] R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekaer,” Bandgap opening in graphene induced by patterned hydrogen adsorption”, Nat. Mater., 9, 315 , 2010.
[45] Baker, Hugh, ASM Handbook: Volume 3: Alloy Phase Diagrams, Okamoto, Hiroaki, ASM International, 2002.
[46] G. A. Lopez and E. J. Mittemeijer, “The Solubility of C in Solid Cu”,Scr. Mater., 51, 1, 2004.
[47] T. P. Ong, F. Xiong, R. P. H. Chang and C. W. J. White,” Nucleation and Growth of Diamond Carbon-implanted Single Crystal Cooper Surfaces”, J. Mater. Res., 7, 2429, 1992.
[48] L. Constant, C. Speisser and F. L. Normand,” HFCVD diamond growth on Cu(111). Evidence for carbon phase transformations by in situ AES and XPS
”, Surf. Sci., 387, 28, 1997.
[49] W. Zhou, Z. Han, J. Wang, et al,” Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates”, Nano Lett., 6, 2987, 2006.
[50] W. Bao, F. Miao, Z. Chen, et al,” Controlled ripple texturing of suspended graphene and ultrathin graphite membranes”, Nat. Nanotechnol., 4, 562, 2009.
[51] J. B. Nelson and D. P. Riley, ” The thermal expansion of graphite from 15°c. to 800°c.: part I. Experimental”, Proc. Phys. Soc., 57, 477,1945.
[52] Stone, A. J. and Wales, D. J., ” Theoretical Studies of Icosahedral C60 and Some Related Species” Chem. Phys. Lett., 128, 501, 1986.
[53] Yazyev, O. V., Tavernelli, I., Rothlisberger, U., et al,“Early Stages of Radiation Damage in Graphite and Carbon Nanostructures: A First-Principles Molecular Dynamics Study”, Phys. Rev. B, 75, 115418, 2007.
[54] Kotakoski, J., Jin, C. H., Lehtinen, O., Suenaga, K., and Krasheninnikov, A. V., “Electron Knock-on Damage in Hexagonal Boron Nitride Monolayers.”, Phys. Rev. B, 81, 113404, 2010.
[55] Krasheninnikov, A. V., Lehtinen, P. O., Foster, A. S., Nieminen, R. M., “Bending the Rules: Contrasting Vacancy Energetics and Migration in Graphite and Carbon Nanotubes.”, Chem. Phys. Lett, 418, 132, 2006.
[56] El-Barbary, A. A., Telling, R. H., Ewels, C. P., et al, “Structure and Energetics of the Vacancy in Graphite.”, Phys. Rev. B, 68, 144107, 2003.
[57] Ugeda, M. M., Brihuega, I., Guinea, F., et al, “Missing Atom as a Source of Carbon Magnetism.”, Phys. Rev. Lett., 104, 096804, 2010.
[58] Lee, Y. H., Kim and S. G., Tomanek, D.,” Catalytic Growth of Single-Wall Carbon Nanotubes: An ab Initio Study”, Phys. Rev. Lett., 78, 2393, 1997.
[59] Lehtinen, P. O., Foster, A. S., Ayuela, et al, ” Magnetic Properties and Diffusion of Adatoms on a Graphene Sheet.”, Phys. Rev. Lett., 91, 017202, 2003.
[60] Banhart, F.,” Interactions between Metals and Carbon Nanotubes: At the Interface between Old and New Materials”, Nanoscale, 1, 201, 2009.
[61] Lusk, M. T., Wu, D. T. and Car, L. D.,” Graphene Nanoengineering and the Inverse Stone_Thrower_Wales Defect”, Phys. Rev. B, 81, 155444, 2010.
[62] Jeong, B. W.,Ihm, J., Lee, G.-D.,” Stability of Dislocation Defect with Two Pentagon_Heptagon Pairs in Graphene”, Phys. Rev. B, 78, 165403, 2008.
[63] Yazyev, O. V. and Louie, S. G.,” Topological Defects in Graphene: Dislocations and Grain Boundaries”, Phys. Rev. B, 81, 195420, 2010.
[64] Koskinen, P., Malola, S. and Ha¨kkinen, H., ” Self-Passivating Edge Reconstructions of Graphene”, Phys. Rev. Lett., 101, 115502, 2008.
[65] Lahiri, J., Lin, Y., Bozkurt, P., et al, ” An Extended Defect in Graphene as a Metallic Wire”, Nat. Nanotechnol., 5, 326, 2010.
[66] Meyer, J. C., Chuvilin, A., Algara-Siller, et al,” Selective Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes”, Nano Lett., 9, 2683,2009.
[67] Hashimoto, A., Suenaga, K., Gloter, A., et al, ” Direct Evidence for Atomic Defects in Graphene Layers.”, Nature, 430, 870, 2004.
[68] Gass, M. H., Bangert, U., Bleloch, A. L., et al,” Free-Standing Graphene at Atomic Resolution.”, Nat. Nanotechnol, 3, 676, 2008.
[69] Rodrı´guez-Manzo, J. A. and Banhart, F.,” Creation of Individual Vacancies in Carbon Nanotubes by Using an Electron Beam of 1 Å Diameter.”, Nano Lett., 9, 2285, 2009.
[70] Lemme, M. C., Bell, D. C., Williams, et al, “ Etching of Graphene Devices with a Helium Ion Beam.”, ACS Nano, 3, 2674, 2009.
[71] Balog, R., Jørgensen, B., Nilsson, L., et al., “ Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption.”, Nat. Mater., 9, 31, 2010.
[72] Boukhvalov, D. W., Katsnelson, M. I.,” Chemical Functionalization of Graphene with Defects.”, Nano Lett., 8, 4373, 2008.
[73] Peng, X. and Ahuja, R.,” Symmetry Breaking Induced Bandgap in Epitaxial Graphene Layers on SiC.”, Nano Lett., 8, 4464, 2008.
[74] Pedersen, T. G., Flindt, C., Pedersen, J., et al.,” Graphene Antidot Lattices:Designed Defects and Spin Qubits.”, Phys. Rev. Lett.,100, 136804, 2008.
[75] Reich, S., Maultzsch, J., Thomsen, C., et al, ”Tight- Binding Description of Graphene.”, Phys. Rev. B, 66, 035412, 2002.
[76] Coletti, C., Riedl, C., Lee, D. S., et al,” Charge Neutrality and Band-Gap Tuning of Epitaxial Graphene on SiC by Molecular Doping.”, Phys. Rev. B, 81, 235401, 2010.
[77] Biel, B., Blase, X.,Triozon and F., Roche, S.,” Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons.”, Phys. Rev. Lett., 102, 096803, 2009.
[78] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett., 56, 930 ,1986
[79] Luis G Rosa and Jian Liang, “Atomic force microscope nanolithography: dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography”, J. Phys.: Condens. Matter, 21, 483001, 2009.
[80] Phaedon Avouris, Tobias Hertel, and Richard Martel, “Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication ”, Phys. Rev. Lett, 71,285,1997.
[81] P. A. Fontaine, E. Dubois, and D. Stiévenard, “Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon”, J. Appl. Phys., 84, 1776, 1998.
[82] M. Calleja and R. García,” Nano-oxidation of silicon surfaces by noncontact atomic-force microscopy: Size dependence on voltage and pulse duration”, Appl. Phys. Lett.,76, 3427,2000.
[83] Hisham Z. Massoud, James D. Plummer, and Eugene A. Irene, “Thermal Oxidation of Silicon in Dry Oxygen Growth‐Rate Enhancement in the Thin Regime”, J. Electrochem. Soc. 132, 2685, 1985
[84] E. Dubois and J. L. Bubendorff, “Kinetics of scanned probe oxidation: Space-charge limited growth”,J. Appl. Phys. , 87, 8148, 2000
[85] M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim,” Energy band-gap engineering of graphene nanoribbons”, Phys. Rev. Lett. 98, 206805, 2007
[86] Malard, L.M., Pimenta, M.A., Dresselhaus, G., and Dresselhaus, “Raman spectroscopy in graphene”,M.S. Phys. Rep., 473, 51, 2009.
[87] Ado Jorio, Mildred S. Dresselhaus, Riichiro Saito, and Gene Dresselhaus,” Raman Spectroscopy in Graphene Related Systems”, Wiley-vch, 2011.
[88] Lucchese, M.M., Stavale, F., et al ,” Quantifying ion-induced defects and Raman relaxation length in graphene”, Carbon, 48, 1592,2010.
[89] Jorio, A., Lucchese, M.M., et al, “Measuring Disorder in Graphene with Raman Spectroscopy”, J. Phys. Cond. Matt., 22, 334204,2010.
[90] Pimenta, M.A., Dresselhaus, et al,” Studying disorder in graphite-based systems by Raman spectroscopy”, Phys. Chem. Chem. Phys., 9, 1276,2007.
[91] Knight, D.S. and White, W.B.,” Characterization of diamond films by Raman spectroscopy ”, J. Mater. Res., 4, 385, 1989.
[92] Cancado, L.G., Takai, K., Enoki, T., et al,” Measuring the degree of stacking order in graphite by Raman spectroscopy”, Carbon, 46, 272,2008.
[93] Tuinstra, F.; Koenig, J. L.,” Raman Spectrum of Graphite.”, J. Chem. Phys., 53, 1126,1970.
[94] Knight, D. S. and White, W. B.,” Characterization of Diamond Films by Raman Spectroscopy.”, J. Mater. Res., 4, 385, 1989.
[95] Ferrari, A. C.and Robertson, J.,” Interpretation of Raman Spectra of Disordered and Amorphous Carbon.”, Phys. Rev. B, 61, 14095, 2000.
[96] Ferrari, A. C. and Robertson, J.,” Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamond-like Carbon.”, Phys. Rev. B, 64, 075414,2001
[97] Wei Wu, Qingkai Yu, Peng Peng, et al, “Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes”, IOP PUBLISHING, 23, 035603, 2012
[98] Jong-Hun Kim, Jin Heui Hwang, Joonki Suh, et al,” Work function engineering of single layer graphene by irradiation-induced defects”, Appl. Phys. Lett. 103, 171604, 2013.
|