博碩士論文 101222005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.138.114.94
姓名 程子玹(Tzu-Hsuan Cheng)  查詢紙本館藏   畢業系所 物理學系
論文名稱 鍺 量 子 點 之 拉 曼 光 譜 分 析
(Raman scattering of self-organized Ge quantum dot)
相關論文
★ 應力緩衝自聚性砷化銦量子點之電場調制反射光譜★ 垂直耦合自聚性砷化銦鎵量子點之光學特性研究
★ 氮化銦鎵/氮化鎵多層量子井之光學特性研究★ 自聚性砷化銦鎵量子點之光電特性
★ 熱退火處理之量子點的能階變化及其理論計算★ 碲硒化鋅磊晶層之光學特性研究
★ 硒化鋅磊晶層之光學性質★ 氮化銦鎵卅氮化鎵多層量子井發光二極體之電性研究
★ 低溫成長氮化鎵的光電性質★ 自聚性矽鍺多層量子點光學特性研究
★ III--氮族半導體的極化電場效應★ 應力緩衝層對砷化銦量子點侷限能階之影響
★ 砷化銦量子點在二維光子晶體中共振模態之光學特性研究★ 高銦含量氮化銦鎵薄膜之光學性質研究
★ 氮化銦奈米柱之光學性質研究★ 砷化銦鎵量子點在砷化鎵多面體結構之光學性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文藉由拉曼散射(Raman scattering)量測系統來分析不同直徑的鍺量子點(Quantum dot)樣品之聲子特性與結晶品質等晶格資訊。由室溫拉曼光譜結果可知,當鍺從塊材變為奈米結構下的量子點後,聲子訊號峰值頻率隨直徑變小而有增加的趨勢。先前的研究中指出量子侷限效應(Quantum confinement effect)與應力作用(Strain effect)皆會對塊材與量子點間的相對頻率偏移量造成貢獻。進一步利用此頻率偏移量來分析鍺量子點所受到的應力,並比較兩種不同結構之樣品來觀察其應力來源。進行變溫拉曼量測,可由光學聲子訊號的峰值頻率與半高寬隨溫度的變化關係擬合出非諧和作用所造成的影響。從鍺塊材與量子點的本質頻率差值來探討量子點所受應力,其結果與室溫下所觀察到的相同;而比較非諧和係數後,可以發現量子點確實有受到侷限作用,雖然在聲子頻率沒有很大的變化,但在非諧和振盪作用卻有明顯的貢獻。利用拉曼訊號半高寬可以推算出光學聲子(Opitcal phonon)生命期,其分為本質生命期與衰變生命期。本質生命期可以反應出樣品結晶的好壞,在低溫時本質生命期為總生命期的主要貢獻;隨著溫度的升高,衰變生命期與本質生命期已經相當接近,因此非諧和振盪也會影響總生命期,而使高溫時的光學聲子總生命期較短。
摘要(英) By applying Raman spectroscopy, we have analyzed the phonon properties and crystal structure of different diameters of Ge quantum dot. When the germanium bulk transformed into quantum dot, we can observe that the Raman peak frequency increases as the diameter decreases via the Raman spectra. The reference indicates that the Ge-Ge mode frequency of Ge nanocrystals can be changed by quantum confinement and strain effect. And, Strain tensor in the Ge quantum dots can be further calculated by the Raman shift, and by comparing the different structures of the two samples, their strain sources would be found.The Raman spectra from various sizes of Ge quantum dot shows changes in peak position and linewidth with temperature. These temperature-dependent changes can attribute to the anharmoicity in the vibrational potential. Whether we calculcated the strain tensor from the Raman shift at 300K or intrinsic frequency, we can get the same result. Compared with the anharmonic coefficients, we find that Ge quantum dots were indeed influenced by quantum confinement effect. Quantum confinement effect plays a role in anharmonic oscillations, even though there is no significant change in the phonon frequency.The lifetime of the phonons can be obtained through the result from the temperature-dependent Raman peak, which is divided into the intrinsic lifetime and the decay lifetime. The former lifetime corresponds to the crystal quality, and it is the main contribution to the lifetime of the phonons at low temperature. The latter lifetime will be close to the value of the former lifetime with the rising temperature. Therefore, we conclude that as the temperature rises, the anharmonic effect would be raised.
關鍵字(中) ★ 鍺量子點
★ 拉曼
★ 應力
★ 非諧和效應
★ 生命期
關鍵字(英) ★ quantum dot
★ Raman
★ strain
★ anharmonic effect
★ lifetime
論文目次 中文摘要I
AbstractII
致謝IV
目錄V
圖目錄VII
表目錄IX
第一章 導論1
第二章 實驗樣品與量測技術3
2-1 拉曼散射原理3
2-2 應力引起之聲子能量偏移7
2-3 聲子非諧和效應10
第三章 實驗樣品與量測技術14
3-1 實驗樣品介紹14
3-2 拉曼光譜實驗17
第四章 實驗結果與討論20
4-1 鍺量子點之室溫拉曼光譜20
4-2 鍺量子點之變溫拉曼光譜30
4-3 光學聲子生命期38
第五章 結論42
參考文獻43
參考文獻 [1] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, Vol. 46, pp. 15578-15581,
December 1992.
[2] L. Zhuang et al., “Silicon single-electron quantum-dottransistor switch operating at room temperature”, Phys. Rev. Lett., Vol. 72, pp. 1205-1207, August 1998.
[3] M. E. Rubin et al., “Imaging and spectroscopy of single InAs self-assembled quantumdots using ballistic electron emission microscopy”, Phys. Rev. Lett., Vol. 77, pp. 5268, September 1996.
[4] G. L. Chen et al., “Tunneling spectroscopy of germanium quantum-dot in single-hole transistors with self-aligned electrodes”, Nanotechnology, Vol. 18, pp. 475402, October
2007.
[5] S. S. Tseng et al., “Photoresponses in poly-Si phototransistors incorporating germanium quantum dots in the gate dielectrics”, Appl. Phys. Lett., Vol. 93, pp. 191112, August 2008.
[6] M. A. Green, “Third generation photovoltaics-solar cells for 2020 and beyond”, Physica E, Vol. 14, pp. 65, April 2002.
[7] B. Yang et al., “Measurements of anisotropic thermoelectric properties in superlattices”, Appl. Phys. Lett., Vol. 81, pp. 3588, October 2002.
[8] C. V. Raman and K. S. Krishnan “A new type of secondary radiation”, Nature, Vol. 121, pp. 501, March 1928.
[9] A. B. Talochkin and V. A. Markov, “Raman resonance in the strained Ge quantum dot array”, Nanotechnology, Vol. 19, pp. 275402, May 2008.
[10] Z. Sui et al., “Raman analysis of Si/Ge strained‐layer superlattices under hydrostatic pressure”, Appl. Phys. Lett., Vol. 58, pp. 2351-2353, May 1991.
[11] P. G. Klemens, “Anharmonic decay of optical phonons”, Phys. Rev., Vol. 148, pp. 845, August 1966.
[12] M. Balkanski et al., “Anharmonic effects in light scattering due to optical phonons in silicon”, Phys. Rev. B, Vol. 128, pp. 1928, August 1983.
[13] M. H. Kuo et al., “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance”, Appl. Phys. Lett., Vol. 101, pp. 223107, 2012
[14] J. L. Liu et al., “Optical phonons in self-assembled Ge quantum dot superlattices: Strain relaxation effects”, J. Appl. Phys., Vol. 92, pp. 6804, December 2002.
[15] J. L. Liu et al., “Optical and acoustic phonon modes in self-organized Ge quantum dot superlattices”, Appl. Phys. Lett., Vol. 76, pp. 586-588, January 2000.
[16] B. N. Brockhouse and P. K. Iyengar, “Normal Modes of Germanium by Neutron Spectrometry”, Phys. Rev., Vol. 111, pp. 747, August 1958.
[17] Y. Jie et al., “Phonon confinement in Ge nanocrystals in silicon oxide matrix”, J. Appl. Phys.,Vol. 109, pp. 033107, February 2011.
[18] E. Kasper et al., “Symmetrically strained Si/Ge superlattices on Si substrates”, Phys. Rev. B, Vol.38, pp. 3599, August 1988.
[19] S.M. Sze [ Physics of Semiconductor Devices (John Wiley and Sons, Inc, New York, 1981)]
[20] Jacob Philip and M. A. Breazeale, “Third‐order elastic constants and Grüneisen parameters of silicon and germanium between 3 and 300 °K”, J. Appl. Phys.,Vol.54,
pp.752, September 1983
指導教授 徐子民(Tzu-Min Hsu) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明