參考文獻 |
[1] A.A. Ismail, D.W. Bahnemann, "Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms", Journal of Materials Chemistry, 21 (2011) 11686.
[2] A.L. Linsebigler, G. Lu, J.T. Yates Jr, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results", Chem. Rev., 95 (1995) 735-758.
[3] S.-D. Mo, W. Ching, "Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite", PhRvB, 51 (1995) 13023-13032.
[4] V.C. Fuertes, C.F. Negre, M.B. Oviedo, F.P. Bonafe, F.Y. Oliva, et al., "A theoretical study of the optical properties of nanostructured TiO2", Journal of physics. Condensed matter : an Institute of Physics journal, 25 (2013) 115304.
[5] A. Mills, S. Le Hunte, "An overview of semiconductor photocatalysis", J. Photochem. Photobiol. A: Chem., 108 (1997) 1-35.
[6] J.S. Lee, J. Jang, "Hetero-structured semiconductor nanomaterials for photocatalytic applications", Journal of Industrial and Engineering Chemistry, 20 (2014) 363-371.
[7] B. Weng, S. Liu, Z.-R. Tang, Y.-J. Xu, "One-dimensional nanostructure based materials for versatile photocatalytic applications", RSC Advances, 4 (2014) 12685.
[8] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, et al., "Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires", Nano Lett., 2 (2002) 717-720.
[9] B. Liu, E.S. Aydil, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells", Journal of the American Chemical Society, 131 (2009) 3985-3990.
[10] J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, "Smooth anodic TiO2 nanotubes", Angew. Chem. Int. Ed. Engl., 44 (2005) 7463-7465.
[11] N. Wu, J. Wang, D.N. Tafen, H. Wang, J.-G. Zheng, et al., "Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts", Journal of the American Chemical Society, 132 (2010) 6679-6685.
[12] C. Xiong, K.J. Balkus, "Fabrication of TiO2 nanofibers from a mesoporous silica film", Chemistry of materials, 17 (2005) 5136-5140.
[13] A. Sclafani, J. Herrmann, "Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions", The Journal of Physical Chemistry, 100 (1996) 13655-13661.
[14] J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, "Ultrasensitive NH3Gas Sensor from Polyaniline Nanograin Enchased TiO2 Fibers", The Journal of Physical Chemistry C, 114 (2010) 9970-9974.
[15] J.M. Skoner, K.T. Pitman, "Facial Plastic and Reconstructive Surgery, Third Edition", Head Neck, (2010).
[16] A.K. Kafi, G. Wu, A. Chen, "A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays", Biosens. Bioelectron., 24 (2008) 566-571.
[17] S. Huang, G. Schlichthörl, A. Nozik, M. Grätzel, A. Frank, "Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells", The Journal of Physical Chemistry B, 101 (1997) 2576-2582.
[18] M. Grätzel, "Photoelectrochemical cells", Nature, 414 (2001) 338-344.
[19] S. Ardo, G.J. Meyer, "Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces", Chemical Society reviews, 38 (2009) 115-164.
[20] L. Spanhel, M. Haase, H. Weller, A. Henglein, "Surface modification and stability of strong luminescing CdS particles", Journal of the American Chemical Society, 109 (1987) 5649-5655.
[21] G. Liu, L. Wang, H.G. Yang, H.-M. Cheng, G.Q. Lu, "Titania-based photocatalysts—crystal growth, doping and heterostructuring", Journal of Materials Chemistry, 20 (2010) 831.
[22] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides", Science, 293 (2001) 269-271.
[23] R. Nakamura, T. Tanaka, Y. Nakato, "Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes", The Journal of Physical Chemistry B, 108 (2004) 10617-10620.
[24] N. Serpone, "Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts?", The Journal of Physical Chemistry B, 110 (2006) 24287-24293.
[25] R.J. Good, "A Thermodynamic Derivation of Wenzel′s Modification of Young′s Equation for Contact Angles; Together with a Theory of Hysteresis1", Journal of the American Chemical Society, 74 (1952) 5041-5042.
[26] G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes, "A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination", J. Mater. Res., 19 (2004) 628-634.
[27] S. Yang, Z. Lu, S. Luo, C. Liu, Y. Tang, "Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose", Microchimica Acta, 180 (2013) 127-135.
[28] D. Baird, "Discovering the nanoscale", (2004).
[29] J.H. Yun, Y.H. Ng, C. Ye, A.J. Mozer, G.G. Wallace, et al., "Sodium fluoride-assisted modulation of anodized TiO2 nanotube for dye-sensitized solar cells application", ACS applied materials & interfaces, 3 (2011) 1585-1593.
[30] J. Doshi, D.H. Reneker, "Electrospinning process and applications of electrospun fibers", J. Electrostatics, 35 (1995) 151-160.
[31] G. Taylor, "Disintegration of water drops in an electric field", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280 (1964) 383-397.
[32] J. Zhang, B. Han, "Supercritical CO2-continuous microemulsions and compressed CO2-expanded reverse microemulsions", The Journal of Supercritical Fluids, 47 (2009) 531-536.
[33] B. Xie, C.C. Finstad, A.J. Muscat, "Removal of copper from silicon surfaces using hexafluoroacetylacetone (hfacH) dissolved in supercritical carbon dioxide", Chemistry of materials, 17 (2005) 1753-1764.
[34] K.M. Dooley, C.P. Kao, R.P. Gambrell, F.C. Knopf, "The use of entrainers in the supercritical extraction of soils contaminated with hazardous organics", Ind. Eng. Chem. Res., 26 (1987) 2058-2062.
[35] W. Leitner, "Reactions in Supercritical Carbon Dioxide (scCO2)", in: P. Knochel (Ed.) Modern Solvents in Organic Synthesis, Springer Berlin Heidelberg,(1999) 107-132.
[36] C.-Y. Chen, J.-K. Chang, W.-T. Tsai, C.-H. Hung, "Uniform dispersion of Pd nanoparticles on carbon nanostructures using a supercritical fluid deposition technique and their catalytic performance towards hydrogen spillover", Journal of Materials Chemistry, 21 (2011) 19063-19068.
[37] X. Feng, J. Zhai, L. Jiang, "The fabrication and switchable superhydrophobicity of TiO2 nanorod films", Angew. Chem. Int. Ed., 44 (2005) 5115-5118.
[38] N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hashimoto, "Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces", Langmuir, 14 (1998) 5918-5920.
[39] M. Ma, R.M. Hill, "Superhydrophobic surfaces", Current Opinion in Colloid & Interface Science, 11 (2006) 193-202.
[40] K. Webb, V. Hlady, P.A. Tresco, "Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization", J. Biomed. Mater. Res., 41 (1998) 422.
[41] W. Barthlott, C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces", Planta, 202 (1997) 1-8.
[42] W. Gu, C.P. Tripp, "Reaction of silanes in supercritical CO2 with TiO2 and Al2O3", Langmuir, 22 (2006) 5748-5752.
[43] K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, "Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells", Nano Lett., 7 (2007) 3739-3746.
[44] D. Wang, Y. Liu, B. Yu, F. Zhou, W. Liu, "TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance", Chemistry of Materials, 21 (2009) 1198-1206.
[45] R.N. Wenzel, "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem., 28 (1936) 988-994.
[46] R.-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, "Photoinduced surface wettability conversion of ZnO and TiO2 thin films", The Journal of Physical Chemistry B, 105 (2001) 1984-1990.
[47] M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, et al., "Reversible wettability control of TiO2 surface by light irradiation", Surf Sci., 511 (2002) 401-407.
[48] J. Zheng, S. Bao, Y. Guo, P. Jin, "Natural hydrophobicity and reversible wettability conversion of flat anatase TiO2 thin film", ACS applied materials & interfaces, (2014).
[49] D. Miller, M. Biesinger, N. McIntyre, "Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination?", Surf. Interface Anal., 33 (2002) 299-305.
[50] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, et al., "Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems", Nanotechnology, 18 (2007) 375709.
[51] C. Feng, G. Xu, H. Liu, J. Lv, Z. Zheng, et al., "Glucose biosensors based on Ag nanoparticles modified TiO2 nanotube arrays", Journal of Solid State Electrochemistry, 18 (2013) 163-171.
[52] C. Mao, D.J. Solis, B.D. Reiss, S.T. Kottmann, R.Y. Sweeney, et al., "Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires", Science, 303 (2004) 213-217.
[53] R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, "Biomimetic synthesis and patterning of silver nanoparticles", Nature materials, 1 (2002) 169-172.
[54] S.S. Bale, P. Asuri, S.S. Karajanagi, J.S. Dordick, R.S. Kane, "Protein-Directed Formation of Silver Nanoparticles on Carbon Nanotubes", Advanced Materials, 19 (2007) 3167-3170.
[55] Y.-Y. Song, T. Yang, J. Cao, Z. Gao, R.P. Lynch, "Protein-mediated synthesis of antibacterial silver nanoparticles deposited on titanium dioxide nanotube arrays", Microchimica Acta, 177 (2012) 129-135.
[56] F.F. Peng, Y. Zhang, N. Gu, "Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles", Chin. Chem. Lett., 19 (2008) 730-733.
[57] S.K. Maji, A.K. Dutta, S. Dutta, D.N. Srivastava, P. Paul, et al., "Single-source precursor approach for the preparation of CdS nanoparticles and their photocatalytic and intrinsic peroxidase like activity", Applied Catalysis B: Environmental, 126 (2012) 265-274.
[58] L. Su, J. Feng, X. Zhou, C. Ren, H. Li, et al., "Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles", Anal. Chem., 84 (2012) 5753-5758.
[59] R.A. Spurr, H. Myers, "Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer", Anal. Chem., 29 (1957) 760-762.
[60] Y. Ma, J.-n. Yao, "Photodegradation of Rhodamine B catalyzed by TiO2 thin films", J. Photochem. Photobiol. A: Chem., 116 (1998) 167-170.
[61] O. Prieto, J. Fermoso, Y. Nuñez, J. Del Valle, R. Irusta, "Decolouration of textile dyes in wastewaters by photocatalysis with TiO2", SoEn, 79 (2005) 376-383.
[62] Y. Jiang, W. Wang, X. Li, X. Wang, J. Zhou, et al., "Enzyme-mimetic catalyst-modified nanoporous SiO2-cellulose hybrid composites with high specific surface area for rapid H2O2 detection", ACS applied materials & interfaces, 5 (2013) 1913-1916.
[63] H. Jiang, Z. Chen, H. Cao, Y. Huang, "Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose", Analyst, 137 (2012) 5560-5564.
|