博碩士論文 101329005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.144.96.92
姓名 游沅沅(Yuan-yuan Yu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 表面處理二氧化鈦奈米結構增強其生物感測及光催化特性之研究
(Surface modified TiO2 nanostructures with enhanced bio-sensitivity and photocatalytic properties)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二氧化鈦 ( TiO2 ) 在觸媒、感測器、太陽能電池、生醫材料、表面自潔等皆有廣泛的研究。不同形貌結構與表面修飾處理對於提升性質與擴展二氧化鈦應用扮演著相當重要的角色。本研究第一部分探討超臨界流體處理 ( ScCO2 fluid cleaning ) 對於一維二氧化鈦奈米管陣列 ( TiO2 nanotubes ) 表面性質影響。實驗結果顯示不同管徑二氧化鈦奈米管陣列皆從親水性轉變成疏水性。藉由XPS分析表面鍵結,發現其碳-氫鍵結 ( C-H functional groups ) 訊號明顯上升。為深入探討其機制,比較於退火後所形成銳鈦礦相 ( anatase phase ) 二氧化鈦奈米管陣列表面親疏水性。超臨界流體處理後,退火後二氧化鈦奈米管陣列表面所產生之碳-氫鍵結明顯較少,所量測之接觸角上升幅度下降。可得知二氧化碳超臨界流體對於二氧化鈦奈米管陣列表面鍵結改變具有重要影響。並藉由這樣的特性結合超臨界流體處理與紫外光線照射,使二氧化鈦奈米管陣列表面擁有良好光感測性,形成一可逆轉換浸潤性材料。
在本論文的第二部分我們以電紡絲技術製備表面親水性一維二氧化鈦奈米纖維 ( TiO2 nanofibers ) ,結合生物分子抗體 ( Antibody ) 作為介質,成功以一種無毒且簡易的方式製備出高均勻性的銀奈米粒子修飾-二氧化鈦奈米纖維 ( Ag-TiO2 ) 異質結構。根據實驗結果顯示,以抗體介質合成銀修飾二氧化鈦奈米纖維對於提升光催化活性與感測性有顯著的影響。銳鈦礦與金紅石 ( rutile ) 混和相之Ag-TiO2奈米纖維,在光催化下具有高效能的染料降解效率。並進一步證實二氧化鈦奈米纖維在適當條件下具有過氧化物酶特性 ( peroxidase-like activity ) 能間接偵測葡萄糖濃度。實驗結果顯示修飾過後Ag-TiO2奈米纖維良好的光催化與生物親和力大幅提升了葡萄糖感測靈敏度。
摘要(英) Titanium oxide (TiO2) has been widely applied in photocatalysts, sensors, solar cells, biomaterials, self-cleaning and so on. The surface morphology and surface chemical modification play important role in the properties of TiO2. This study employed a supercritical-CO2-fluid (ScCO2) cleaning process to modify the chemical properties of anodic TiO2 nanotubes surface. We found that ScCO2-treated TiO2 nanotubes can effectively change their surface wettability as a result of photo-oxidation of C-H functional groups formed on the TiO2 surface. In addition, the crystal structure of TiO2 nanotubes transformed from amorphous phase to anatase after annealing at 450 °C for 2 hours. The C-H functional groups of annealed TiO2 nanotubes were significantly less than amorphous TiO2 nanotubes after the ScCO2 cleaning process. We demonstrated a switchable superhydrophilicity of ScCO2-treated anodic TiO2 nanotubes with UV-light irradiation.
In the following, TiO2 nanofibers with different size and crystal structures have been synthesized by electrospinning and further decorated with silver nanoparticles through antibody-mediated synthesis. The study indicates that Ag nanoparticles are uniform deposited on TiO2 nanofibers. Ag-TiO2 nanofibers possessed superb photocatalytic activity for the degradation of Rhodamine B ( RhB ) dye. This study also demonstrates that TiO2 nanofibers possess intrinsic peroxidase-like activity in suitable condition. Ag-TiO2 nanofibers show excellent catalytic performances and good biocompatibility so that they can be used a colorimetric biosensor for glucose detection.
關鍵字(中) ★ 二氧化鈦
★ 奈米管
★ 奈米纖維
★ 超臨界流體
★ 抗體介質合成
★ 光催化性質
★ 生物感測
關鍵字(英) ★ TiO2
★ Nanotubes
★ Nanofibers
★ Supercritical fluid
★ Antibody-mediated
★ Photocatalytic
★ Bio-senstivity
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1二氧化鈦簡介 1
1.2一維二氧化鈦奈米結構 3
1.3一維二氧化鈦奈米結構之應用 3
1.3.1光觸媒 ( Photocatalysts ) 3
1.3.2氣體感測器 ( Gas Sensors ) 4
1.3.3生醫材料 ( Biomaterials ) 4
1.3.4染料敏化太陽能電池 ( Dye-Sensitized Solar Cell ) 5
1.4表面修飾一維二氧化鈦奈米結構 6
1.4.1高分子-二氧化鈦奈米結構 6
1.4.2半導體-二氧化鈦異質結構 6
1.4.3非金屬離子-二氧化鈦結構 7
1.4.4金屬-二氧化鈦異質結構 8
1.5主要性質分析 9
1.5.1浸潤性 ( Wettability ) 9
1.5.2光催化活性 ( Photocatalytic activity ) 10
1.5.3葡萄糖感測 ( Glucose detection ) 11
第二章 實驗方法 13
2.1實驗流程 13
2.2實驗藥品 14
2.3實驗儀器 15
2.3.1電化學陽極氧化系統 15
2.3.2奈米靜電紡絲機 16
2.3.3超臨界二氧化碳流體 17
2.3.4高溫管型爐 18
2.3.5 He ( Xe ) 燈光照射儀 18
2.4實驗分析 19
2.4.1場發射掃描式電子顯微鏡 ( FE-SEM ) 19
2.4.2能量散佈分析儀 ( EDS ) 19
2.4.3 X光粉末繞射儀 ( XRD ) 19
2.4.4穿透式電子顯微鏡 ( TEM ) 20
2.4.5顯微拉曼光譜儀 ( Raman ) 20
2.4.6紫外光-可見光光譜儀 ( UV-VIS Spectrophotometer ) 20
2.4.7接觸角量測儀 ( Contact Angle ) 21
2.4.8 X光光電子能譜儀 ( XPS ) 21
第三章 超臨界流體修飾二氧化鈦奈米管陣列 22
3.1實驗動機 22
3.2實驗步驟 23
3.2.1製備二氧化鈦奈米管陣列 23
3.2.2表面修飾處理 23
3.3結果與討論 24
3.3.1材料形貌與結構 24
3.3.2材料表面性質分析 28
3.4結論 34
第四章 抗體介質合成銀修飾二氧化鈦奈米纖維 35
4.1實驗動機 35
4.2實驗步驟 36
4.2.1製備二氧化鈦奈米纖維 36
4.2.2抗體表面修飾合成銀-二氧化鈦奈米纖維 36
4.2.3光催化活性測試 36
4.2.4葡萄糖感測試驗 36
4.3結果與討論 37
4.3.1形貌與結構分析 37
4.3.2光催化活性分析 47
4.3.3葡萄糖感測分析 54
4.4結論 59
第五章 總結與未來展望 60
參考文獻 62

參考文獻 [1] A.A. Ismail, D.W. Bahnemann, "Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms", Journal of Materials Chemistry, 21 (2011) 11686.
[2] A.L. Linsebigler, G. Lu, J.T. Yates Jr, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results", Chem. Rev., 95 (1995) 735-758.
[3] S.-D. Mo, W. Ching, "Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite", PhRvB, 51 (1995) 13023-13032.
[4] V.C. Fuertes, C.F. Negre, M.B. Oviedo, F.P. Bonafe, F.Y. Oliva, et al., "A theoretical study of the optical properties of nanostructured TiO2", Journal of physics. Condensed matter : an Institute of Physics journal, 25 (2013) 115304.
[5] A. Mills, S. Le Hunte, "An overview of semiconductor photocatalysis", J. Photochem. Photobiol. A: Chem., 108 (1997) 1-35.
[6] J.S. Lee, J. Jang, "Hetero-structured semiconductor nanomaterials for photocatalytic applications", Journal of Industrial and Engineering Chemistry, 20 (2014) 363-371.
[7] B. Weng, S. Liu, Z.-R. Tang, Y.-J. Xu, "One-dimensional nanostructure based materials for versatile photocatalytic applications", RSC Advances, 4 (2014) 12685.
[8] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, et al., "Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires", Nano Lett., 2 (2002) 717-720.
[9] B. Liu, E.S. Aydil, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells", Journal of the American Chemical Society, 131 (2009) 3985-3990.
[10] J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, "Smooth anodic TiO2 nanotubes", Angew. Chem. Int. Ed. Engl., 44 (2005) 7463-7465.
[11] N. Wu, J. Wang, D.N. Tafen, H. Wang, J.-G. Zheng, et al., "Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts", Journal of the American Chemical Society, 132 (2010) 6679-6685.
[12] C. Xiong, K.J. Balkus, "Fabrication of TiO2 nanofibers from a mesoporous silica film", Chemistry of materials, 17 (2005) 5136-5140.
[13] A. Sclafani, J. Herrmann, "Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions", The Journal of Physical Chemistry, 100 (1996) 13655-13661.
[14] J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, "Ultrasensitive NH3Gas Sensor from Polyaniline Nanograin Enchased TiO2 Fibers", The Journal of Physical Chemistry C, 114 (2010) 9970-9974.
[15] J.M. Skoner, K.T. Pitman, "Facial Plastic and Reconstructive Surgery, Third Edition", Head Neck, (2010).
[16] A.K. Kafi, G. Wu, A. Chen, "A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays", Biosens. Bioelectron., 24 (2008) 566-571.
[17] S. Huang, G. Schlichthörl, A. Nozik, M. Grätzel, A. Frank, "Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells", The Journal of Physical Chemistry B, 101 (1997) 2576-2582.
[18] M. Grätzel, "Photoelectrochemical cells", Nature, 414 (2001) 338-344.
[19] S. Ardo, G.J. Meyer, "Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces", Chemical Society reviews, 38 (2009) 115-164.
[20] L. Spanhel, M. Haase, H. Weller, A. Henglein, "Surface modification and stability of strong luminescing CdS particles", Journal of the American Chemical Society, 109 (1987) 5649-5655.
[21] G. Liu, L. Wang, H.G. Yang, H.-M. Cheng, G.Q. Lu, "Titania-based photocatalysts—crystal growth, doping and heterostructuring", Journal of Materials Chemistry, 20 (2010) 831.
[22] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides", Science, 293 (2001) 269-271.
[23] R. Nakamura, T. Tanaka, Y. Nakato, "Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes", The Journal of Physical Chemistry B, 108 (2004) 10617-10620.
[24] N. Serpone, "Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts?", The Journal of Physical Chemistry B, 110 (2006) 24287-24293.
[25] R.J. Good, "A Thermodynamic Derivation of Wenzel′s Modification of Young′s Equation for Contact Angles; Together with a Theory of Hysteresis1", Journal of the American Chemical Society, 74 (1952) 5041-5042.

[26] G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes, "A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination", J. Mater. Res., 19 (2004) 628-634.
[27] S. Yang, Z. Lu, S. Luo, C. Liu, Y. Tang, "Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose", Microchimica Acta, 180 (2013) 127-135.
[28] D. Baird, "Discovering the nanoscale", (2004).
[29] J.H. Yun, Y.H. Ng, C. Ye, A.J. Mozer, G.G. Wallace, et al., "Sodium fluoride-assisted modulation of anodized TiO2 nanotube for dye-sensitized solar cells application", ACS applied materials & interfaces, 3 (2011) 1585-1593.
[30] J. Doshi, D.H. Reneker, "Electrospinning process and applications of electrospun fibers", J. Electrostatics, 35 (1995) 151-160.
[31] G. Taylor, "Disintegration of water drops in an electric field", Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280 (1964) 383-397.
[32] J. Zhang, B. Han, "Supercritical CO2-continuous microemulsions and compressed CO2-expanded reverse microemulsions", The Journal of Supercritical Fluids, 47 (2009) 531-536.
[33] B. Xie, C.C. Finstad, A.J. Muscat, "Removal of copper from silicon surfaces using hexafluoroacetylacetone (hfacH) dissolved in supercritical carbon dioxide", Chemistry of materials, 17 (2005) 1753-1764.

[34] K.M. Dooley, C.P. Kao, R.P. Gambrell, F.C. Knopf, "The use of entrainers in the supercritical extraction of soils contaminated with hazardous organics", Ind. Eng. Chem. Res., 26 (1987) 2058-2062.
[35] W. Leitner, "Reactions in Supercritical Carbon Dioxide (scCO2)", in: P. Knochel (Ed.) Modern Solvents in Organic Synthesis, Springer Berlin Heidelberg,(1999) 107-132.
[36] C.-Y. Chen, J.-K. Chang, W.-T. Tsai, C.-H. Hung, "Uniform dispersion of Pd nanoparticles on carbon nanostructures using a supercritical fluid deposition technique and their catalytic performance towards hydrogen spillover", Journal of Materials Chemistry, 21 (2011) 19063-19068.
[37] X. Feng, J. Zhai, L. Jiang, "The fabrication and switchable superhydrophobicity of TiO2 nanorod films", Angew. Chem. Int. Ed., 44 (2005) 5115-5118.
[38] N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hashimoto, "Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces", Langmuir, 14 (1998) 5918-5920.
[39] M. Ma, R.M. Hill, "Superhydrophobic surfaces", Current Opinion in Colloid & Interface Science, 11 (2006) 193-202.
[40] K. Webb, V. Hlady, P.A. Tresco, "Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization", J. Biomed. Mater. Res., 41 (1998) 422.
[41] W. Barthlott, C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces", Planta, 202 (1997) 1-8.
[42] W. Gu, C.P. Tripp, "Reaction of silanes in supercritical CO2 with TiO2 and Al2O3", Langmuir, 22 (2006) 5748-5752.

[43] K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, "Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells", Nano Lett., 7 (2007) 3739-3746.
[44] D. Wang, Y. Liu, B. Yu, F. Zhou, W. Liu, "TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance", Chemistry of Materials, 21 (2009) 1198-1206.
[45] R.N. Wenzel, "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem., 28 (1936) 988-994.
[46] R.-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, "Photoinduced surface wettability conversion of ZnO and TiO2 thin films", The Journal of Physical Chemistry B, 105 (2001) 1984-1990.
[47] M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, et al., "Reversible wettability control of TiO2 surface by light irradiation", Surf Sci., 511 (2002) 401-407.
[48] J. Zheng, S. Bao, Y. Guo, P. Jin, "Natural hydrophobicity and reversible wettability conversion of flat anatase TiO2 thin film", ACS applied materials & interfaces, (2014).
[49] D. Miller, M. Biesinger, N. McIntyre, "Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination?", Surf. Interface Anal., 33 (2002) 299-305.
[50] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, et al., "Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems", Nanotechnology, 18 (2007) 375709.

[51] C. Feng, G. Xu, H. Liu, J. Lv, Z. Zheng, et al., "Glucose biosensors based on Ag nanoparticles modified TiO2 nanotube arrays", Journal of Solid State Electrochemistry, 18 (2013) 163-171.
[52] C. Mao, D.J. Solis, B.D. Reiss, S.T. Kottmann, R.Y. Sweeney, et al., "Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires", Science, 303 (2004) 213-217.
[53] R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, "Biomimetic synthesis and patterning of silver nanoparticles", Nature materials, 1 (2002) 169-172.
[54] S.S. Bale, P. Asuri, S.S. Karajanagi, J.S. Dordick, R.S. Kane, "Protein-Directed Formation of Silver Nanoparticles on Carbon Nanotubes", Advanced Materials, 19 (2007) 3167-3170.
[55] Y.-Y. Song, T. Yang, J. Cao, Z. Gao, R.P. Lynch, "Protein-mediated synthesis of antibacterial silver nanoparticles deposited on titanium dioxide nanotube arrays", Microchimica Acta, 177 (2012) 129-135.
[56] F.F. Peng, Y. Zhang, N. Gu, "Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles", Chin. Chem. Lett., 19 (2008) 730-733.
[57] S.K. Maji, A.K. Dutta, S. Dutta, D.N. Srivastava, P. Paul, et al., "Single-source precursor approach for the preparation of CdS nanoparticles and their photocatalytic and intrinsic peroxidase like activity", Applied Catalysis B: Environmental, 126 (2012) 265-274.
[58] L. Su, J. Feng, X. Zhou, C. Ren, H. Li, et al., "Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles", Anal. Chem., 84 (2012) 5753-5758.

[59] R.A. Spurr, H. Myers, "Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer", Anal. Chem., 29 (1957) 760-762.
[60] Y. Ma, J.-n. Yao, "Photodegradation of Rhodamine B catalyzed by TiO2 thin films", J. Photochem. Photobiol. A: Chem., 116 (1998) 167-170.
[61] O. Prieto, J. Fermoso, Y. Nuñez, J. Del Valle, R. Irusta, "Decolouration of textile dyes in wastewaters by photocatalysis with TiO2", SoEn, 79 (2005) 376-383.
[62] Y. Jiang, W. Wang, X. Li, X. Wang, J. Zhou, et al., "Enzyme-mimetic catalyst-modified nanoporous SiO2-cellulose hybrid composites with high specific surface area for rapid H2O2 detection", ACS applied materials & interfaces, 5 (2013) 1913-1916.
[63] H. Jiang, Z. Chen, H. Cao, Y. Huang, "Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose", Analyst, 137 (2012) 5560-5564.
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明