博碩士論文 101329004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:123 、訪客IP:18.217.4.250
姓名 黃柏菱(Po-ling Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 離子液體電解質應用於石墨烯超級電容之特性分析
(Supercapacitor Properties of Graphene Nanosheets in Ionic Liquid Electrolytes)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極
★ 電解質添加劑對鋅二次電池陽極電化學性質的影響★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析
★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響
★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究★ 高濃度電解質於鋰電池知應用研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要是利用Staudenmaier法製備石墨烯,用來做為超高電容器的電極,電解液則是選用擁有廣大電位窗的離子液體,藉以得到高的能量密度以及功率密度。
首先選用每分鐘1℃升溫到300℃並無持溫的石墨烯 (GNS-300)在不同離子液體內進行比較,使用的離子液體分別為1-ethyl-3-methylimidazolium bis(trifluoromethylsulfony)imide (EMI-NTf2)、N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfony)imide (BMP-NTf2)、1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4)、1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA) 以及N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA),結果顯示在低速充放電下的比電容值與離子液體中的陰離子有關,且在DCA系列的離子液體中具有較佳的比電容值,其中以BMP-DCA的比電容值為最高,約234 F/g左右, 若陰離子相同,在高速充放電下,EMI系列的比電容值皆高於BMP系列的比電容值,但因BMP-DCA的電位窗可達3.3 V,而EMI-DCA只有2.5 V,所以其能量密度 (88.5 Wh/kg)以及功率密度 (17.1 kW/kg)皆高於EMI-DCA,所以便選用BMP-DCA做為電解液。
目前碳材皆以多孔碳材方向發展,但製程皆過於繁複,本研究期望利用簡便的熱還原法,利用不同升溫速率製造孔洞,以及升溫至不同溫度比較含氧官能基對於石墨烯之影響。本研究選用五種碳材在離子液體BMP-DCA中進行比較,石墨烯方面,選用三種情況下製程之石墨烯進行比較,分別是GO放入300 ℃的高溫爐並無持溫 (多孔含氧官能基多石墨烯,HGNS-300)、每分鐘升溫1℃直到300℃並無持溫 (無孔洞含氧官能基多石墨烯,GNS-300)以及每分鐘升溫60℃直到1100℃並無持溫(多孔含氧官能機少石墨烯,HGNS-1100),另外兩種則分別為活性碳 (Activated carbon)以及多壁奈米碳管 (Multiwalled Carbon Nanotubes),根據結果顯示,多孔含氧官能基多石墨烯的比電容值高於其他碳材,並且擁有高的比電容值 (327 F/g)、能量密度 (123.7 Wh/kg)以及高的功率密度 (17.3 kW/kg)。兩千圈後維持率仍有79 %。目前超高電容普遍是以活性碳在有機中為主軸,本研究比較多孔含氧官能基多石墨烯以及活性碳在有機溶液TEABF4/PC以及離子液體BMP-DCA的超高電容行為,由結果得知多孔含氧官能基多石墨烯在離子液體BMP-DCA中有最好的超高電容性能。在高溫60 ℃下比較BMP-DCA以及TEABF4/PC,由結果得知高溫下有機溶液性能提升不多,而離子液體的性能大幅提升,其比能量密度由123.7 Wh/kg提升為138.8 Wh/kg,比功率密度則由17.3 kW/kg提升為51.6 kW/kg。
摘要(英) The graphene sheets were prepared by Staudenmaier method in this study, and were used for the electrode in supercapacitor. We chose ionic liquids as electrolyte for their wide potential window to get better energy density and power density.
First we chose graphene (GNS-300) which is made by raising temperature 1℃ per 1 min to 300°C. We used this GNS-300 to test in different ionic liquids, and compare their properties. The ionic liquids included EMI-NTf2, BMP-NTf2, EMI-BF4, EMI-DCA, and BMP-DCA. The results showed that the specific capacitance at low scan rate was related to the anion of ionic liquids. And the graphene sheets in the DCA-based ionic liquids had the best capacitance performance. In particular, in BMP-DCA, the specific capacitance of graphene sheets was 234 F/g. At high scan rate, EMI-NTf2 and EMI-DCA have higher specific capacitance than BMP-NTf2 and BMP-DCA. But the potential window of graphene sheets in BMP-DCA was 3.3 V, it’s bigger than EMI-DCA, so BMP-DCA can get better enrgy density for 88.5 Wh/kg and power density for 17.1 kW/kg.
In my research, we want to use thermal reduction to change different raising temperature rate and different temperature. We hope that we can get holes and oxygen containing groups to improve graphene’s superapacitor performance. So we choosing five carbon materials to compare in BMP-DCA. We chose three kinds of graphene sheets like HGNS-300 which is made by raising temperature to 300°C directly, GNS-300 which is made by raising temperature to 300°C per 1°C per 1min, and HGNS-1100 which is made by raising temperature to 1100°C per 60°C per 1min. The other carbon materials were activated carbon (AC) and multiwalled carbon nanotubes (MWCNT). The studies showed HGNS-300 had the highest specific capacitance than others because HGNS-300 had holes and many oxygen containing functional group. HGNS-300 had highest specific capacitance of 327 F/g, energy density of 123.7 Wh/kg and power density of 17.3 kW/kg. After 2000 cycles, the retention still have 79 %. Compare HGNS-300 and activated carbon in BMP-DCA and TEABF4/PC, we can get that HGNS-300 in BMP-DCA have best supercapacitor performance. Compare HGNS-300 in BMP-DCA and TEABF4/PC at 60 ℃, the results show that test in BMP-DCA, getting better energy density for 138.8 Wh/kg and power density for 51.6 kW/kg.
關鍵字(中) ★ 超高電容器
★ 石墨烯
★ 離子液體
關鍵字(英)
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vii
表目錄 xi
圖目錄 xiii
第一章、 前言 1
第二章、文獻回顧 3
2-1能源儲存裝置概述 3
2-2 超高電容器簡介 7
2-2-1電雙層電容器 (electric double-layer capacitors) 8
2-2-2擬電容器 (pseudo-capacitors) 11
2-3電雙層電容器之材料分類 14
2-4石墨烯之材料特性與製備方法 17
2-4-1石墨烯之材料特性 17
2-4-2石墨烯之製備方法 20
2-5超高電容器之電解質 25
2-6以離子液體做為電解質之超高電容器 31
第三章、實驗步驟 43
3-1 碳材之準備 43
3-1-1石墨烯之製備 43
3-1-2多壁奈米碳管之取得 44
3-1-3活性碳之取得 44
3-2電解液之製備 45
3-2-1合成BMPC (1-Butyl-1-methylpyrrolidinium Chloride) 45
3-2-2合成離子液體 46
3-3 材料特性分析 48
3-3-1表面形貌之觀察 48
3-3-2表面組成以及缺陷結構 48
3-3-3結晶結構分析 48
3-4 碳材於離子液體內電化學性質之評估 49
3-4-1電極之製備 49
3-4-2電化學裝置 49
3-4-3電化學性質之評估 50
第四章、結果與討論 53
4-1石墨烯 (GNS-300)於不同離子液體內之比較 53
4-1-1石墨烯之材料特性分析 53
4-1-2 離子液體之電化學性質 54
4-1-3石墨烯 (GNS-300)於EMI-NTf2中之電雙層電容行為 54
4-1-4石墨烯 (GNS-300)於BMP-NTf2中之電雙層電容行為 55
4-1-5石墨烯 (GNS-300)於EMI-BF4中之電雙層電容行為 56
4-1-6石墨烯 (GNS-300)於EMI-DCA中之電雙層電容行為 57
4-1-7石墨烯(GNS-300)於BMP-DCA中之電雙層電容行為 58
4-1-8石墨烯 (GNS-300)於不同電解液之儲電性能 59
4-1-9石墨烯 (GNS-300)與活性碳於有機溶液以及離子液體之比較 64
4-1-10石墨烯(GNS-300)於有機溶液以及離子液體不同溫度之比較 65
4-2不同碳材於離子液體BMP-DCA中之比較 93
4-2-1不同碳材表面形貌之觀察 93
4-2-2不同碳材表面組成以及缺陷結構 94
4-2-3不同碳材結晶結構分析以及比表面積分析 95
4-2-5離子液體BMP-DCA 96
4-2-6不同碳材於離子液體BMP-DCA中之儲電性能 97
4-2-7多孔含氧官能基多石墨烯 (HGNS-300)與活性碳於有機溶液以及離子液體之比較 102
4-2-8多孔含氧官能基多石墨烯 (HGNS-300)於有機溶液以及離子液體不同溫度之比較 104
第五章、結論 127
參考文獻 129
參考文獻 [1] P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors”. Nat. Mater., 2008.7: p. 845-854
[2] A. G. Pandolfo, A. F. Hollenkamp, “Carbon properties and their role in supercapacitors”. J. Power Sources, 2006. 157: p. 11-27.
[3] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, “Graphene-based ultracapacitors”. Nano Lett., 2008. 8: p. 3498-3502.
[4] L. L. Zhang, X. S. Zhao, “Carbon-based materials as supercapacitor electrodes”. Chem.Soc .Rev., 2009. 38: p. 2520-2531.
[5] Z. Fan , Q. Zhao, T. Li, “Easy synthesis of porous grapheme nanosheets and their use in supercapacitors”. Carbon, 2012. 50: p. 1699-1712.
[6] C. G. Liu, Z. Yu, D. Neff, “Graphene-Based Supercapacitor with an Ultrahigh Energy Density”. Nano Lett. , 2010.10: p. 4863-4868.
[7] T. Y. Kim, H. C. Kang, T. T. Tung, “Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors”. RSC Adv., 2012. 2: p. 8808-8812.
[8] T. Sato, G. Masuda, K. Takagi, “Electrochemical properties of novel ionic liquids for electric double layer capacitor applications”. Electrochim. Acta, 2004. 49: p. 3603-3611.
[9] J. N. Barisci, G. G. Wallace, D. R. MacFarlane, R. H. Baughman, “Investigation of ionic liquids as electrolytes for carbon nanotube electrodes”. Electrochem. Commun. , 2004. 6: p. 22-27.
[10] F. Silva, C. Gomes, M. Figueiredo, R. Costa, A. Martins, C. M. Pereira, “The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface–Effect of temperature on the differential capacitance”. J. Electroanal. Chem. , 2008. 622: p. 153-160.
[11] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L. C. Qin, “Graphene and carbon nanotube composite electrodes for supercapacitorswith ultra-high energy density”. Phys. Chem. Chem. Phys. , 2011. 13: p. 17615-17624.
[12] L. Timperman, H. Galiano, D. Lemordant, M. Anouti, “Phosphonium-based protic ionic liquid as electrolyte for carbon-based supercapacitors”. Electrochem.Commun. , 2011. 13: p. 1112-1115.
[13] J. F. Huang, H. Luo, C. Liang, I. W. Sun, G. A. Baker , S. Dai, J. Am, “Hydrophobic Brønsted Acid-Base Ionic Liquids Based on PAMAM Dendrimers with High Proton Conductivity and Blue Photoluminescence”.
Chem. Soc. , 2005. 127: p. 12784-12785.
[14] F. Enders, S. Z. E. Abedin, “Air and water stable ionic liquids in physical chemistry”. Phys. Chem. Chem. Phys. , 2006. 8: p. 2101-2116.
[15] M. J. Earle, J. Esperanca, M. A. Gilea, J. N. C. Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon, J. A. Widegren, “The distillation and volatility of ionic liquids”. Nature, 2006. 439: p. 831-834.
[16] H. Ohno, John Wiley & Sons, Hoboken, “Electrochemical Aspects of Ionic Liquids”. 2008.
[17] H. Liu, G. Zhu, “The electrochemical capacitance of nanoporous carbons in aqueous and ionic liquids”. J. Power Sources, 2007. 171: p. 1054-1061.
[18] R. Chen, F. Wu, B. Xu, L. Li, X. Qiu, S. Chen, “Binary Complex Electrolytes Based on LiX[X = N(SO2CF3)2−,CF3SO3−, ClO4−]-Acetamide for Electric Double Layer Capacitors”. J. Electrochem. Soc. , 2007. 154: p. A703-A708.
[19] K. Yuyama, G. Masuda, H. Yoshida, T. Sato, “Ionic liquids containing the tetrafluoroborate anion have the best performance and stability for electric double layer capacitor applications”. J. Power Sources, 2006. 162: p. 1401-1408.
[20] F. B. Sillars, S. I. Fletcher, M. Mirzaeian, P. J. Hall, “Variation of electrochemical capacitor performance with roomtemperature ionic liquid electrolyte viscosity and ion size”. Phys. Chem. Chem. Phys. , 2012. 14: p. 6094-6100.
[21] G. H. Sun, K. X. Li, C. G. Sun, “Application of 1-ethyl-3-methylimidazolium thiocyanate tothe electrolyte of electrochemical double layer capacitors”. J. Power Sources, 2006. 162: p. 1444-1450.
[22] X. Zhao, B. M. Sanchez, P. J. Dobson, P. S. Grant, “The role of nanomaterials in redox-based supercapacitors for next generationenergy storage devices”. Nanoscale, 2011. 3: p. 839-855.
[23] G. P. Wang, L. Zhang, J. J. Zhang, “A review of electrode materials for electrochemical supercapacitors”. Chem. Soc. Rev. , 2012. 41: p. 797-828.
[24] J. R. Miller, A. F. Burke, “Electrochemical Capacitors:Challenges and Opportunities for Real-World Applications”. Electrochem. Soc. Interface, 2008. 17: p. 53-57.
[25] Y. Y. Liu, D. W. Liu, Q. F. Zhang, G. Z. Cao, “Engineering nanostructured electrodes away from equilibrium for lithium-ionbatteries”. J. Mater. Chem. , 2011. 21: p. 9969-9983.
[26] R. Kotz, M. Carlen, “Principles and applications of electrochemical capacitors”. Electrochim. Acta, 2000. 45: p. 2483-2498.
[27] P. Simon, A. Burke, “Nanostructured Carbons: Double-Layer Capacitance and More”. Electrochem. Soc. Interface, 2008. 17: p. 38-43.
[28] P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors”, Nat. Mater. , 2008. 7: p. 845-854.
[29] C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, “Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors”. Nano Lett. , 2006. 6: p. 2690-2695.
[30] K. A. Wepasnick, B. A. Smith, J. L. Bitter, D. H. Fairbrother, “Chemical and structural characterization of carbon nanotube surfaces”. Anal. Bioanal. Chem. , 2010. 396: p. 1003-1014.
[31] A. K. Geim, K. S. Novoselov, “The rise of grapheme”. Nat. Mater. , 2007. 6: p. 183-191.
[32] I. Calizo, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, “Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers”. Nano Lett. , 2007. 7: p. 2645-2649.
[33] A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials”. Nat. Mater. , 2011. 10: p. 569-581.
[34] D. L. Nika, A. A. Balandin, “Two-dimensional phonon transport in graphene”. J. Phys. Condens. Matter. , 2012. 24: p. 233203.
[35] S. De, J. N. Coleman, “Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films?”. ACS Nano, 2010. 4: p. 2713-2720.
[36] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth , S. Roth, “The structure of suspended graphene sheets”. Nature, 2007. 446: p. 60-63.
[37] M. Terrones, A. R. Botello-Mendez, J. Campos-Delgado, F. Lopez- Urias, Y. I. Vega-Cantu, F. J. Rodriguez-Macias, A. L. Elias, E. Munoz-Sandoval, A. G. Cano-Marquez, J. C. Charlier, H. Terrones, “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications”. Nano Today, 2010. 5: p. 351-372.
[38] S. G. S. V. P. Gusynin, J. P. Carbotte, “Unusual Microwave Response of Dirac Quasiparticles in Graphene”. Phys. Rev. Lett. , 2006. 96: p. 256802.
[39] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes”. Nat. Nano, 2010, 5: p. 574-578.
[40] V. Goyal, A. A. Balandin, “Thermal Properties of the Hybrid Graphene-Metal Nano-Micro-Composites: Applications in Thermal Interface Materials”. Appl. Phys. Lett. , 2012. 100: p. 073113.
[41] K. M. F. Shahil, A. A. Balandin, “Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials”. Nano Lett. , 2012. 12: p. 861-867.
[42] Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications”. Adv. Mater. , 2010. 22: p. 3906-3924.
[43] C. Gomez-Navarro, M. Burghard, K. Kern, “Elastic Properties of Chemically Derived Single Graphene Sheets”. Nano Lett. , 2008. 8: p. 2045-2049.
[44] C. Lee, X. D. Wei, J. W. Kysar, J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”. Science, 2008. 321: p. 385-388.
[45] A. R. Ranjbartoreh, B. Wang, X. P. Shen, G. X. Wang, “Advanced mechanical properties of graphene paper” . J. Appl. Phys. , 2011. 109: p. 014306.
[46] L. S. Panchokarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, C. N. R. Rao, “Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene”. Adv. Mater. , 2009. 21: p. 4726-4730.
[47] N. Al-Aqtash, I. Vasiliev, “Ab Initio Study of Boron- and Nitrogen-Doped Graphene and Carbon Nanotubes Functionalized with Carboxyl Groups”. J. Phys. Chem. C, 2011. 115: p. 18500-18510.
[48] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, “Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups”. J. Am. Chem. Soc. , 2011. 134: p. 15-18.
[49] X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, H. J. Dai, “N-Doping of Graphene Through Electrothermal Reactions with Ammonia”. Science, 2009. 324: p. 768-771.
[50] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials”. Nature, 2006, 442: p. 282-286.
[51] C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, “Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets”. Nano Lett. , 2007. 7: p. 3499-3503.
[52] O. C. Compton, D. A. Dikin, K. W. Putz, L. C. Brinson, S. T. Nguyen, “Electrically Conductive “Alkylated” Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper”. Adv. Mater. , 2010. 22: p. 892-896.
[53] M. Pumera, “Graphene-based nanomaterials for energy storage”. Energy Environ. Sci. , 2011. 4: p. 668-674.
[54] L. T. Qu, Y. Liu, J. B. Baek, L. M. Dai, “Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells”. ACS Nano, 2010. 4: p. 1321-1326.
[55] Y. B. Tan, J. M. Lee, “Graphene for supercapacitor applications”. J. Mater. Chem. A, 2013. 1: p. 14814-14843.
[56] A. K. Geim, K. S. Novoselov, “The rise of graphene”. Nat. Mater. , 2007. 6: p. 183-191.
[57] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”. Science, 2004. 306: p. 666.
[58] J. Chen, M. Duan, G. Chen, “Continuous mechanical exfoliation of graphene sheets via three-roll mill”. J. Mater. Chem. , 2012. 22: p. 19625.
[59] J. Hou, Y. Shao, M. W. Ellis, R. B. Moored, B. Yie, “Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries”. Phys. Chem. Chem. Phys. , 2011. 13: p. 15384-15402.
[60] J. Coraux, et al., “Structural coherency of graphene on Ir(111)”. Nano Lett. , 2008. 8: p. 565-570.
[61] P. W. Sutter, J. I. Flege, E. A. Sutter, “Epitaxial grapheme on ruthenium”. Nat. Mater. , 2008. 7: p. 406-411.
[62] X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, “Preparation of Novel 3D Graphene Networks for Supercapacitor Applications”. Small, 2011. 7: p. 3163-3168.
[63] X. S. Li, W. W. Cai, L. Colombo, R. S. Ruoff, “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling”. Nano Lett. , 2009. 9: p. 4268-4272.
[64] S. Stankovich, et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”. Carbon, 2007. 45: p. 1558-1565.
[65] S. D. Perera, R. G. Mariano, N. Nijem, Y. Chabal, J. P. Ferraris, K. J. Balkus Jr, “Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced grapheme”. J. Power Sources, 2012. 215: p. 1-10.
[66] B. Zhao, P. Lia, Y. Jiang, D. Pan, H. Tao, J. Song, T. Fang, W. Xu, “Supercapacitor performances of thermally reduced graphene oxide”. J. Power Sources, 2012. 198: p. 423-427.
[67] B. Fang, Y. Z. Wei, K. Maruyama, M. Kumagai, “High capacity supercapacitors based on modified activated carbon aerogel” . J. Appl. Electrochem. , 2005. 35: p. 229-233.
[68] A. B. Fuertes, F. Pico, J. M. Rojo, “Influence of pore structure on electric double-layer capacitance of template mesoporous carbons”. J. Power Sources, 2004. 133: p. 329-336.
[69] G. J. Lee, S. I. Pyun, “Theoretical Approach to Ion Penetration into Pores with Pore Fractal Characteristics during Double-Layer Charging/Discharging on a Porous Carbon Electrode”. Langmuir, 2006. 22: p. 10659-10665.
[70] S. M. Chergui , N. Abbas , T. Matrab, M. Turmine, “Uptake of copper ions by carbon fiber/polymer hybrids prepared by tandem diazonium salt chemistry and in situ atom transfer radical polymerization”. Carbon, 2010. 48: p. 2106-2122.
[71] T. Y. Kim, H. W. Lee, M. Stoller, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, K. S. Suh, “High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes”. ACS Nano, 2011. 5:p. 463-442.
[72] C. Liu, Z.Yu, D. Neff, A. Zhamu, B. Z. Jang, “Graphene-Based Supercapacitor with an Ultrahigh Energy Density”. Nano. Lett. , 2010. 10: p. 4863-4868.
[73] Y. J. Oh, J. J. Yoo, Y. I. Kim, J. K. Yoon,H. N. Yoon, J.H. Kim, S. B. Park, “Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor”. Electrochem. Acta, 2014. 116: p. 118-128.
[74] W. Zhang, Y. Zhang, Y. Tian, Z. Yang, Q. Xiao, X. Guo, L. Jing, Y.F. Zhao, Y.M. Yan, J.S. Feng, K. Sun, “Insight into the Capacitive Properties of Reduced Graphene Oxide”. ACS Appl. Mater. Interfaces, 2014. 6: p. 2248-2254.
[75] Y. W. Zhu, at al. , “Carbon-Based Supercapacitors Produced by Activation of Graphene”. Science, 2011. 332: p. 1537-1541.
[76] F. B. Sillars, S. I. Fletcher, M. Mirzaeian, P. J. Hall, “Variation of electrochemical capacitor performance with room temperature ionic liquid electrolyte viscosity and ion size”. Phys. Chem. Chem. Phys., 2012. 14: p. 6094-6100.
[77] T. Y. Kim, G. Jung, S. Yoo, K. S. Suh, R. S. Ruoff, “Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores”. ACS Nano, 2013. 7: p. 6899-6905.
[78] N. V. Plechkova, K. R. Seddon, “Applications of ionic liquids in the chemical industry“. Chem. Soc. Rev. , 2008. 37: p. 123-150.
[79] F. Endres, S. Z. E. Abedin, “Air and water stable ionic liquids in physical chemistry”. Phys. Chem. Chem. Phys. , 2006. 8: p. 2101-2116.
[80] M. Gali´nski, A. Lewandowski, Izabela St˛epniak, “Ionic liquids as electrolytes”. Electrochim. Acta, 2006. 51: p. 5567-5580.
[81] A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi, “Ionic liquids for hybrid supercapacitors”. Electrochem. Commun. , 2004. 6: p. 566-570.
[82] E. Frackowiak, G. Lota, J. Pernak, “Room-temperature phosphonium ionic liquids for supercapacitor application”. Appl. Phys. Lett. , 2005. 86: p.164104.
[83] M. Lazzari, M. Mastragostino, F. Soavi, “Capacitance response of carbons in solvent-free ionic liquid electrolytes”. Electrochem. Commun. , 2007. 9: p. 1567-1572.
[84] M. Ue, M. Takeda, T. Takahashi, M. Takehara, “Ionic Liquids with Low Melting Points and Their Application to Double-Layer Capacitor Electrolytes”. Electrochem. Solid-State Lett. , 2002. 5: p. A119-A121.
[85] A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi, “Ionic liquids for hybrid supercapacitors”. Electrochem. Commun. , 2004. 6: p. 566-570.
[86] A. Lewandowski, M. Galinski, “Carbon–ionic liquid double-layer capacitors”. J. Phys. Chem. Solids, 2004. 65: p. 281-286.
[87] M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito, “Application of Low-Viscosity Ionic Liquid to the Electrolyte of Double-Layer Capacitors”. Electrochem. Soc. , 2003. 250: p. A499-A502.
[88] T. Sato, G. Masuda, K. Takagi, “Electrochemical properties of novel ionic liquids for electric double layer capacitor applications”. Electrochim. Acta, 2004. 49: p. 3603-3611.
[89] H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, M. Kono, “Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]− ”. J. Power Sources, 2006. 160: p. 1308-1313.
[90] M. Lazzari, F. Soavi, M. Mastragostino, “High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes”. J. Power Sources, 2008. 178: p. 490-496.
[91] C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, F. Wei, “Highly Electroconductive Mesoporous Graphene Nanofibers and Their Capacitance Performance at 4 V”. J. Am. Chem. Soc. , 2014. 136: p. 2256-2259.
[92] Z. Lei, Z. Liu, H. Wang, X. Sun, L. Lu, X. S. Zhao, “A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte”. J. Mater. Chem. A, 2013. 1: p. 2313-2321.
[93] Y. Chen, X. Zhang, H. Zhang, X. Sun, D. Zhang, Y. Ma, “High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation”. RSC Adv. , 2012. 2: p. 7747-7753.
[94] T. Y. Kim, H. W. Lee, M. Stoller, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, K. S. Suh, “High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes”. ACS Nano, 2011. 5 : p. 436-442.
[95] Z. Xu, Z. Li, C. M. B. Holt, X. Tan, H. Wang, B. S. Amirkhiz, T. Stephenson, D. Mitlin, “Electrochemical Supercapacitor Electrodes from Sponge-like Graphene Nanoarchitectures with Ultrahigh Power Density”. J. Phys. Chem. Lett. , 2012. 3: p. 2928-2933.
[96] S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, “Graphene-based electrochemical supercapacitors”. J. Chem. Sci. , 2008. 120: p. 9-13.
[97] S. Mitani, M. Sathish, D. Rangappa, A. Unemoto, T. Tomai, I. Honma, “Nanographene derived from carbon nanofiber and its application to electric double-layer capacitors”. Electrochem. Acta, 2012. 68: p. 146- 152.
[98] Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, “High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes”. Carbon, 2011. 49: p. 573-580.
[99] C. Fu, Y. Kuang, Z. Huang, X. Wang, Y. Yin, J, Chen, H. Zhou, “Supercapacitor based on graphene and ionic liquid electrolyte”. J. Solid State Electrochem. , 2011. 15: p. 2581-2585.
[100] D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G. B. Deacon, “Low viscosity ionic liquids based on organic salts of the dicyanamide anion”. Chem. Commun. , 2001. 16: p. 1430-1431.
[101] Y. Yoshida, O. Baba, G. Saito, “Ionic Liquids Based on Dicyanamide Anion: Influence of Structural Variations in Cationic Structures on Ionic Conductivity”. J. Phys. Chem. B, 2007. 111: p. 4742-4749.
[102] F. F. C. Bazito, Y. Kawano, R. M. Torresi, “Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium”. Electrochim. Acta, 2007. 52: p. 6427-6437.
[103] D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, “Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases”. J. Phys. Chem. B, 1999. 103: p. 4164-4170.
[104] P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M.Gratzel, “Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts”. Inorg. Chem. , 1996. 35: p. 1168-1178.
[105] S. V. Dzyuba, R. A. Bartsch, “Influence of Structural Variations in 1-Alkyl(aralkyl)-3-Methylimidazolium Hexafluorophosphates and Bis(trifluoromethylsulfonyl) imides on Physical Properties of the Ionic Liquids”. Chem. Phys. Chem. , 2002. 3: p. 161-166.
[106] T. Nishida, Y. Tashiro, M. Yamamoto, “Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte”. J. Fluorine Chem. , 2003. 120: p. 135-141.
[107]N. Nambu, T. Satoh, “Electrolytic Characteristics of Tetramethylammonium Compounds and Performance of Electric Double-Layer Capacitors Evaluated by Using Transmission-Line Model”. ECS Trans. , 2013. 50: p. 163-174.
[108] S. H. Tamboli, B. S. Kim, G. Choi, H. Lee, D. Lee, U. M. Patil, J. Lim, S. B. Kulkarni, S. C. Jun, H. H. Cho, “Post-heating effects on the physical and electrochemical capacitive properties of reduced graphene oxide paper”. J. Mater. Chem. A, 2014. 2: p. 5077-5086.
[109] H. Zhang, V. V. Bhat, N. C. Gallego, C. I. Contescu, “Thermal Treatment Effects on Charge Storage Performance of Graphene-Based Materials for Supercapacitors”. ACS Appl. Mater. Interfaces, 2012. 4: p. 3239-3246.
[110] L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Yi Huang, Y. Ma, A. Yu, Y. Chen, “Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors”. Sci. Rep. , DOI: 10.1038/srep01408.
[111] S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, A. Govindaraj, C. N. R. Rao, “Graphene-based electrochemical supercapacitors”. J. Chem. Sci. , 2008. 120: p. 9-12.
[112] K. Hung, C. Masarapu, T. Ko, B. Wei, “Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric”. J. Power Sources, 2009. 193: p. 944-949.
指導教授 張仍奎(Jeng-kuei Chang) 審核日期 2014-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明