博碩士論文 101328003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:54.197.64.207
姓名 盧勁甫(Jin-Fu Lu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
(Analysis of uniform temperature distribution in MOCVD susceptor by high frequency RF induction heater)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究
★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析
★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響
★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證
★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究★ 以RTP硒化法探討CIS薄膜及元件特性之研究
★ 局域性表面電漿共振效應應用於OLED出光增益之研究★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿
★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用數值分析法,模擬計算高頻RF感應加熱器應用於MOCVD承載盤,探討分析電磁感應加熱現象及承載盤溫度分布。利用數值分析法計算二維軸對稱電磁感應加熱器於承載盤所產生的加熱現象,研究結果顯示當線圈彼此間距的改變,對加熱溫度大小有所影響,承載盤溫度差會因線圈間距的增加而減小,而線圈與承載盤的距離會影響承載盤所產生的溫度大小,溫度差會因距離的增加而減小,並在固定間距的情況下,調整各別線圈與承載盤的距離,以獲得承載盤晶圓區域均勻的溫度分布,最後得出優化的線圈排列為: 線圈彼此間距為0.8cm,各別線圈與承載盤的距離分別為: 0.5cm、0.7cm、0.8cm、0.5cm、0.6cm、0.7cm下,可獲承載盤表面溫度差為2.2 K。
接續二維軸對稱的研究探討,比較二維和三維模組溫度分布不同,在三維模擬中,發現因線圈環繞方式的關係,會導致承載盤各位置電流分布皆不相同,而熱源分布受電流分布決定,且各別位置熱源分布不同導致承載盤的溫度分布有所差異,藉由加入二維優化的線圈排列有效改善承載盤的溫度差,並修正二維優化線圈的排列,最後在各別線圈與承載盤的距離分別為: 0.5cm、0.5cm、0.6cm、0.6cm、0.7cm、0.8cm下,獲得良好的溫度分布。
摘要(英) This study uses the numerical analysis to simulate the high frequency RF induction heating for MOCVD susceptor, the phenomenon of electromagnetic induction heating and distribution of temperature on the susceptor are investigated. Using numerical analysis calculates the 2D axisymmetric model with phenomenon of electromagnetic induction heating in MOCVD susceptor, the research indicates the temperature difference is decreased with increasing space of coil turns and the temperature difference will decrease with the distance between coil and susceptor, and then the space of coil turn is fixed at 0.8 cm with adjusting the distance between coil and susceptor in order to find the uniform temperature distribution on the deposition area of wafer. In this summary, it obtains the temperature difference is only 2.2 K on the deposition area of susceptor with the distance between individual coil and susceptor are 0.5cm, 0.7cm, 0.8cm, 0.5cm, 0.6cm and 0.7cm.
Following the 2D axisymmetric model, the research further compares 2D model with 3D model in electromagnetic induction heating. In the 3D model, the result discovers that by twining coil mode which will result in different current density distribution in different positions of susceptor. The current density distribution decides the distribution of heat source. Because of the different distribution of heat source that will result in different temperature distribution on the susceptor. Consequently, by using the optimized arrangement of coil in 2D model and improving the arrangement of coil that the distance between individual coil and susceptor are 0.5cm, 0.5cm, 0.6cm, 0.6cm, 0.7cm and 0.8cm for obtaining the fine temperature distribution on the susceptor.
關鍵字(中) ★ 高頻感應加熱
★ 發光二極體
★ 加熱器
關鍵字(英) ★ MOCVD
★ RF
★ Heater
★ LED
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1研究背景與動機 1
1-2 MOCVD 磊晶系統 6
1-2-1 氣體傳輸系統 6
1-2-1 反應腔體 9
1-2-3 加熱系統 13
1-2-4 尾氣處理系統 17
1-3 薄膜沈積原理 18
1-3-1 薄膜沈積原理及機制 18
1-3-2 金屬有機化學氣相沈積 25
1-4文獻回顧 27
1-5 研究內容與目的 30
第二章 研究方法 33
2-1 研究應用理論 33
2-1-1電磁感應原理 33
2-1-2 集膚效應 36
2-1-3 鄰近效應 38
2-1-4 焦耳定律 40
2-1-5 熱傳遞現象 42
2-2 有限元素法 48
2-3 數值分析流程 51
2-4數學模型與相關條件闡述 52
2-4-1高頻電磁感應加熱模型建立 52
2-4-2材料性質 55
2-4-3統馭方程式 56
2-4-4起始及邊界條件 58
2-4-5 模擬網格建立與收斂公差測試 59
第三章 結果與討論 66
3-1 實驗內容 66
3-2二維高頻電磁感應加熱模擬分析 68
3-2-1線圈彼此間距對承載盤熱場影響之分析 68
3-2-2線圈與承載盤的距離對承載盤熱場影響之分析 71
3-2-3 調整各別線圈對承載盤熱場影響探討與分析 74
3-2-4 微調各別線圈對承載盤熱場影響探討與分析 81
3-2-5小結 89
3-3三維高頻電磁感應加熱模擬分析 90
3-3-1 高頻電磁感應加熱線圈水平排列模擬分析 90
3-3-2 加入二維溫度優化之高頻感應加熱線圈排列 94
3-3-3 修正二維優化線圈排列 97
3-3-4小結 103
第四章 結論 104
4-1 結論 104
參考文獻 105
參考文獻 [1] A.G. Thompson, “MOCVD technology for semiconductors”, Journal of Materials letters, Vol. 30, pp 255-263, 1996.
[2] 陸大成, 段樹坤, 金屬有機化合物氣相外延基礎與應用, 一版, 科學出版社, 北京, 2009年.
[3] B. Mitrovic, A. Gurary, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactos under a wide range of process parameters”, Journal of Crystal Growth, Vol 287, pp 656-663, 2005.
[4] M. Dauelsberg, E.J. Thrush, B. Schineller and J. Kaeppeler, “Technology of MOVPE Production Tools”, Elsevier Ltd, 2004.
[5] 詹少彬, “MOCVD 加熱系統研究”, 華中科技大學, 碩士論文, 2008.
[6] M. Dauelsberg, C. Martin, H. Protzmann et al. “Modeling and process design of III-nitride MOVPE at near-atmosphericpressure in close coupled showerhead and planetary reactors”, Journal of Crystal Growth Vol. 298, pp.418-424, 2007.
[7] D. G. Zhao, J. J. Zhu, D. S. Jiang et al. “ Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition”, Journal of Crystal Growth, Vol.289, pp. 72-75, 2006.
[8] H. W. Jackson, J. L. Watkins, S. Chung et al. “Conductive sphere in a radio frequency field: Theory and applications topositioners, heating, and noncontact measurements”, J. Appl. Phys. 1996, 79(7): 3370~3384 [24].
[9] T. Murakami, Y. Okuno, and H. Yamasaki. “Performance of rf-assisted ?magnetohydrodynamics power generator”, Physics of Plasmas, Vol. 12, pp. 113503-1~113503-8, 2005.
[10] L. M. Kaufmann, F. Heuken, M. R. Tilders, et al. “Safety aspects of MOVPE in research and development: a example”, Journal Crystal Growth, Vol. 93, pp. 279-284, 1988.
[11] J. M. Colabella, R. A. Stall, C. T. Sorenson, “The absorption and subsequent oxidation of AsH3 and PH3 on activated carbon”, Journal Crystal Growth, Vol. 92, pp. 189-195, 1988.
[12] 莊達人, VLSI 製造技術, 高立圖書有限公司, 1996.
[13] D. Smith, Thin-Film Deposition Principles and Practice, McGraw-Hill.
Inc., Boston, 1995.
[14] X. Hong, 半導體製程技術導論, 羅正忠, 張鼎張, 三版, 台灣培生教育
出版股份有限公司, 臺北, 民國96年.
[15] 陳玄宗, “以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力”, 國立
中央大學, 碩士論文, 民國100年.
[16] 方志烈,半導體照明技術,電子工業出版社,2009.
[17] A. Roy, B. Mackintosh, J. P. Kalejs, Q. S. H. Zhang and V. Prasad,“A
numerical model for inductively heated cylindrical silicon tube growth system”, Journal of Crystal Growth, Vol. 211, pp. 365-371, 2000.
[18] O. Klein, P. Philip,“Transient temperature phenomena during sublimation
growth of silicon carbide single crystals”, Journal of Crystal Growth, Vol. 249, pp. 512-522, 2003.
[19] Q, -S. Chen, P. Gao and W. R. Hu,“Effects of induction heating on
temperature distribution and growth rate in large-size SiC growth system”, Journal of Crystal Growth, Vol. 266, pp. 320-326, 2004.

[20] H. Shen, Z. Q. Yao, Y. J. Shi and J. Hu,“Study on temperature field
induced in high frequency induction heating”, Acta Metall. Sin., Vol. 19, pp. 190-196, 2006.
[21] J. M. Dedulle, “Pedagogic using of COMSOL Multiphysics for learning
numerical method and numerical modeling”, Excerpt from the proceedings of the COMSOL Users Conference, Pairs, 2006.
[22] J. M. Dedulle, F. Mercier, D. Chaussende and M. Pons, “Modeling of high
temperature crystal growth process”, Excerpt from the proceedings of the COMSOL Users Conference, Grenoble, 2007.
[23] J. S. Park, S. Taniguchi and Y. J. Park,“Maximum joule heat by tubular
susceptor with critical thickness on induction heating”, Journal of Physics D: Applied Physics, Vol. 42, 045509(6pp), 2009.
[24] N. Biju, N. Ganesan, C. V. Krishnamurthy, Krishnan Balasubramaniam,
“Frequency optimization for eddy current thermography”, NDT&E, Vol.42, pp.415-420, 2009.
[25] A. K. Georgieva, R. R. Ciechonski, U. Forsberg, A. Lundskog and E.
Janzen. “Hot-wall MOCVD for highly efficient and uniform growth of AlN”, Crystal Growth & Design, Vol. 9, No. 2, pp. 880-884, 2009.
[26] X. Chen, S. Nishizawa, K. Kaimoto, “Numerical simulation of a new SiC
growth system by the dual-directional sublimation method”, Journal of Crystal Growth, Vol. 312, pp. 1697-1702, 2010.
[27] M. Dauelsberg, M. Deufel, M. Reinhold and G. Strauch,“Equipment and
process simulation of compound semiconductor MOCVD in the production scale multiwafer planetary reactor”, International Conference on Simulation of Semiconductor Devices and Processes, Greece, 2001.

[28] C. S. Kim, J. Hong, J. Shim. Y. Won and Y. L. Kwon,“Multiphysics
modeling and design of ultralarge multiwafer MOVPE reactor for group lll-Nitride Light emitting diodes”, Thermal, Mechanical & Multi-Physics simulation, and Experiments in Microelectronics and Microsystems - 2010 11th International Conference, Bordeaux, 2010.
[29] L. H. Ming, H. Yue, Z. J. Cheng, X. S. Rui. N. J. Yu and Z. X.
Wei.“Multiphysics modeling and design of ultralarge multiwafer MOVPE reactor for group lll-Nitride Light emitting diodes”, Chinese Physics B, Vol. 18, No. 11, pp.5072-5077, 2009.
[30] L. H. Ming, H. Yue, J. C. Zhang, L. A. Yang, S. R. Xu, Y. M. Chang, Z. W.
Bi, X. W. Zhou and J. Y. Ni, “Thermal transportation simulation of a susceptor structure with ring groove for the vertical MOCVD reactor”, Journal of Crystal Growth, Vol. 311, pp. 4679-4684, 2009.
[31] L. H. Ming, H. Yue, J. C. Zhang, C. Chen, Y. M. Chang, S. R. Xu and Z.
W. Bi, “Optimization and finite element analysis of temperature field in the nitride MOCVD reactor by induction heating”, Chin. Phys. Lett, Vol. 27, No. 7, pp. 070701-1~070701-4, 2010.
[32] L. Z. Ming, H. Y. Jiang. Y. B. Han, J. P. Li, J. Q. Yin, J. C.
Zhang,“Temperature uniformity of wafer on a large-sized susceptor for a nitride vertical MOCVD reactor”, Chin. Phys. Lett, Vol. 29, No. 3, pp. 030701-1~070701-4, 2012.
[33] Guru, Hiziroglu, 電磁學, 劉宗平, 新科技書局, 二版, 臺北, 民國98年.
[34] I. Khan, J. Tapson, I. devries, “An induction furnace employing a 100kHz
MOSFET full bridge current source load resonant inverter”, IEEE Proceedings on Industrial Electronics, Vol. 2, pp.530-534, 1998.
[35] S. Zinn and S. L. Semiatin, “Elements of induction heating design, control
and application”, Electric Power Research Institute, Inc. Alto, CA. U.S.A.
[36] 潘天明, 現代感應加熱裝置, 冶金工業出版社, 中國北京, 民國85年.
[37] 蘇煒城,“高頻感應加熱器之控制設計與實際量測”, 私立中原大學, 碩
士論文, 民國87年.
[38] 劉明峰,“全橋相移式柔性切換負載並聯共振電流行感應加熱器之設計
與研製”,私立中原大學, 碩士論文, 民國93年.
[39] 周坤成, 高周波的基礎與應用, 文笙書局, 臺北, 民國84年.
[40] J. R. Garcia, J. M. Burdio, A. Martinez and J. Sancho, “A method for
calculating the workpiece power dissipation in induction heating processes”, IEEE Peocessings on Power Electronics, Vol. 1, pp. 302-307, 1994.
[41] Yunus A. Cengel, Heat and mass transfer, McGraw-Hill Education(Asia),
Third Edition, Singapore, 2006.
[42] 白長城, 張海興, 方湖寶, 高等學校教材紅外物理, 電子工業出版社,
北京, 1989.
[43] 王冒成, 有限單元法, 清華大學出版社, 北京, 2003.
[44] Incropera Dewitt, 熱傳遞, 侯順雄, 林松浩, 張仲卿, 高麗圖書有限公
司, 臺北, 民國95年.
指導教授 利定東(Tomi Li) 審核日期 2014-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明