博碩士論文 962203054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.141.25.232
姓名 廖千宜(Liao-Chian Yi)  查詢紙本館藏   畢業系所 化學學系
論文名稱 多孔材料吸附特性研究與氣體線上校正方法探討
(The Characteristic Study on Porous Materials and on-line Calibration Techniques for Trace Gas Measurements)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分為「多孔材料性質研究」及「標準氣體製備」兩大部分。
在第一部分中將研究各種孔洞材料對於C2~C10之VOCs(Volatile Organic Compounds)物種的捕捉效率。以商業化碳吸附劑作為比較基礎,評估矽骨幹微孔洞材料ZSM-5和中孔洞材料MCM-41、SBA-1作為吸附材料的可行性。並且藉由增加進樣壓力來改善高揮發性小分子於常溫、常壓下捕捉效率低落的缺陷。
第二部分則針對標準氣體的製備進行探討,其配製方法大致可區分為靜稀釋法(Static Dilution)與動態稀釋法(Dynamic Dilution)兩大類。靜態稀釋法中的重量法是將純物質或原料氣體填入毛細管中秤重,再以線上擊碎並吹入氮氣至高壓鋼瓶中稀釋而成,先前已初步完成21種ppm(v / v)濃度範圍之VOC混合氣體。
由於秤重之初已準確得知鋼瓶中各物種間相對莫耳數比例,但稀釋過程卻存在很大之不確定度,無法準確得知各物種的絕對濃度。因此設計使用一具追溯性之標準品針對選定的物質進行校正,再利用各物種間莫耳數比回推得其他物質之絕對濃度。
本實驗進而利用GC之電子式壓力控制器作為動態稀釋裝置,將此ppmv等級的標準氣體簡易稀釋至ppb(v / v)濃度範圍,以利於空氣中低濃度VOCs的例行性量測。
雖然使用重量法配製標準氣體可得準確度相當高的結果,然而對於某些反應性較大的物種,因易與鋼瓶表面起化學反應而損失,並不適用於靜態稀釋法的製備與儲存。因此本實驗進一步發展動態稀釋法中的滲透管法,使用自行製作的滲透管進行線性與穩定性測試,期望能進一步克服高極性物種無法配製存放於鋼瓶中的缺陷及開發使用自製滲透管進行線上即時分析的技術。
摘要(英) The research includes two parts: the characteristic study on porous materials and the preparation of standard gas mixtures.
In the first part, the adsorption efficiency of porous materials for volatile organic compounds (VOCs) was investigated by gas chromatography (GC) with flame ionization detection (FID). Comparison of sorption characteristics was made between self-prepared silicates and commercial carbon adsorbents via trapping a ppm level gas mixture containing compounds from C2-C10. These self-prepared silicates included microporous silicate-ZSM-5, as well as mesoporous silicates-MCM-41 and SBA-1. To quantitatively describe adsorption efficiency, the term “recovery” was defined and assessed for each silicate by referencing to a well-studied multi-carbon sorbent combination. When trapping with silicates at room temperature the recovery was found to be above 90% for compounds heavier than C7, but was poor for higher boiling compounds. It was also noticed that the poor recovery for high boiling compounds can be improved by increasing the sample pressure.
The second part describes the preparation of standard gas mixtures. Standard gas mixtures containing 21 VOCs from C2-C12 at low parts per million by volume (ppmv) level was prepared by a gravimetric method developed in-house. Capillary tube containing these compounds were prepared and accurately weighed. These tubes then were crushed and flushed by high purity N2 to a 29.5 L evacuated aluminum cylinder, filling to approximately 1000 psi.
Unlike conventional gravimetric method where a large-scale balance is used for weighing filled cylinders to determine final mixing ratios, this study deliberately avoided using the large-scale balance due to its high cost and inaccessibility to average laboratories. Instead, a traceable parts per billion by volume (ppbv) level commercial gas standard was then used to calibrate the concentrations of selected compounds within the self-prepared mixture and to estimate the dilution factor during the dilution process. Because the mole ratios between the 21 compounds were known from weighing, final concentrations of other compounds in the cylinder can then be derived. In this process, GC’s electronic pneumatic controllers (EPCs) were employed as the flow device for diluting the standard mixture from the ppmv to the ppbv level.
Although the gravimetric method is suited for preparing standard mixtures with high accuracy for volatile non-polar compounds, it has limitations for polar or unstable compounds due to possible wall effects. As a result, techniques for making permeation tube were also investigated for on-line calibration of ambient VOCs.
關鍵字(中) ★ 孔洞材料
★ 標準氣體
關鍵字(英) ★ Standard Gas Mixtures
★ Porous Material
論文目次 摘要 I
目錄 VII
圖目錄 IX
表目錄 XI
第一章、緒論 1
1.1. 揮發性有機污染物(VOCs)簡介 1
1.2. 大氣中揮發性有機物質之採樣與分析方法 2
1.3. 研究動機 3
第二章、各材料回收率之探討 6
2.1. 前濃縮原理及研究動機 6
2.2. 孔洞材料發展 7
2.2.1. 碳吸附劑 11
2.2.2. 中孔洞矽分子篩MCM-41 14
2.2.3. 微孔洞矽分子篩ZSM-5 22
2.2.4. 中孔洞矽分子篩SBA-1 27
2.3. 研究方法 29
2.4. 實驗條件 30
2.5. 結果與討論 38
2.5.1. 商業化碳吸附劑 40
2.5.2. 中孔洞矽分子篩MCM-41 43
2.5.3. 中孔洞矽分子篩MCM-41+微孔洞碳吸附劑Carboxen 1003 46
2.5.4. 微孔洞矽分子篩ZSM-5 49
2.5.5. 中孔洞矽分子篩SBA-1 52
2.6. 結論 55
第三章、進樣壓力對回收率之影響 58
3.1. 前言 58
3.1.1. 冷凍捕捉技術 58
3.1.2. 研究目的 59
3.2. 研究方法 61
3.3. 實驗條件 62
3.4. 結果與討論 63
3.4.1. 碳吸附劑Carboxen 1003 65
3.4.2. 中孔洞材料MCM-41 68
3.5. 結論 71
第四章、自製ppbv等級VOC標準混合氣體及校正 72
4.1. 前言 72
4.2. 重量法 74
4.3. 研究目的 76
4.4. 研究方法 77
4.5. 實驗條件 80
4.6. 結果與討論 86
4.6.1. 以EPC壓力改變計算稀釋倍數 88
4.6.2. EPC實際流量計算稀釋倍數 93
4.6.3. 固定稀釋倍數改變進樣體積製備檢量線 100
4.6.4. 改變進樣體積與改變稀釋倍數之歸一化結果 107
4.6.5. 使用市售標準品(SPECTRA GASES)校正自製標準氣體濃度 122
4.7. 結論 130
第五章、滲透管製作與特性 133
5.1. 研究動機 133
5.2. 滲透管法簡介 134
5.2.1. 滲透速率及濃度計算 135
5.2.2. 滲透管的平衡及使用期限 137
5.2.3. 滲透管的校正及應用 139
5.3. 研究方法 140
5.4. 實驗條件 141
5.5. 結果與討論 145
5.5.1. 重量法量測滲透速率 145
5.5.2. 改變稀釋氣體流速探討BTEX濃度與感度線性關係 151
5.6. 結論 157
第六章、結論 159
參考文獻 162
參考文獻 [1] K.D. Tombe, D.K. Verma, L. Stewart, E.B. Reczek, American Industrial Hygiene Association Journal 52 (1991) 136.
[2] 丁君強, in 化學學系, 國立中央大學, 臺灣,中壢, 2003.
[3] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, Journal of the American Chemical Society 114 (1992) 10834.
[4] M. Estermann, L.B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 352 (1991) 320.
[5] R.H. Jones, J.M. Thomas, J. Chen, R. Xu, Q. Huo, S. Li, Z. Ma, A.M. Chippindale, Journal of Solid State Chemistry 102 (1993) 204.
[6] M.E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, Nature 331 (1988) 698.
[7] R.M. Dessau, J.L. Schlenker, J.B. Higgins, Zeolites 10 (1990) 6.
[8] D.H. Olson, The Journal of Physical Chemistry 74 (2002) 2758.
[9] R.B. Bialek, W.M. Meier, M.E. Davis, Zeolites 11 (1991) 7.
[10] C.A. Fyfe, H. Gies, G.T. Kokotailo, B. Marler, D.E. Cox, The Journal of Physical Chemistry 94 (2002) 3718.
[11] J.L. Schlenker, W.J. Rohrbaugh, P. Chu, E.W. Valyocsik, G.T. Kokotailo, Zeolites 5 (1985) 2.
[12] H. van Koningsveid, J.C. Jansen, H. van Bekkum, Zeolites 10 (1990) 7.
[13] W.M. Mier, D.H. Olson, Butterworth-Heinemann, London, 1987.
[14] B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, Journal of the American Chemical Society 106 (2002) 6092.
[15] P. Selvam, S.K. Bhatia, C.G. Sonwane, Industrial & Engineering Chemistry Research 40 (2001) 3237.
[16] X.S. Zhao, G.Q. Lu, G.J. Millar, Industrial & Engineering Chemistry Research 35 (1996) 2075.
[17] A. Firouzi, D. Kumar, L. Bull, T. Besier, P. Sieger, Q. Huo, S. Walker, J. Zasadzinski, C. Glinka, J. Nicol, a. et, Science 267 (1995) 1138.
[18] J.S. Beck, J.C. Vartuli, G.J. Kennedy, C.T. Kresge, W.J. Roth, S.E. Schramm, Chemistry of Materials 6 (2002) 1816.
[19] M.E. Davis, S.L. Burkett, Zeolites 12 (1995) 15.
[20] C.M. Bambrough, R.C.T. Slade, R.T. Williams, S.L. Burkett, S.D. Sims, S. Mann, Journal of Colloid and Interface Science 201 (1998) 220.
[21] P.J. Branton, P.G. Hall, K.S.W. Sing, Journal of the Chemical Society, Chemical Communications (1993) 2.
[22] P.J. Branton, P.G. Hall, K.S.W. Sing, Adsorption 1 (1995) 77.
[23] P.J. Branton, P.G. Hall, K.S.W. Sing, H. Reichert, F. Sch?th, K.K. Unger, Journal of the Chemical Society, Faraday Transactions (1994) 3.
[24] P.J. Branton, P.G. Hall, M. Treguer, K.S.W. Sing, Journal of the Chemical Society, Faraday Transactions
(1995) 3.
[25] P.J. Branton, K.S.W. Sing, J.W. White, Journal of the Chemical Society, Faraday Transactions (1997) 4.
[26] F.G. Buchholtz, S. Broecker, The Journal of Physical Chemistry A 102 (1998) 1556.
[27] I.M. Dahl, E. Myhrvold, A. Slagtem, M. Stocker, Adsorpt. Sci. Technol. 15 (1997).
[28] O. Franke, G. Schulz-Ekloff, J. Rathouský, S. J., A. Zukal, Journal of the Chemical Society, Chemical Communications (1993) 3.
[29] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 395 (1992).
[30] M. Kruk, M. Jaroniec, A. Sayari, The Journal of Physical Chemistry B 101 (1997) 583.
[31] M. Kruk, M. Jaroniec, A. Sayari, The Journal of Physical Chemistry B 103 (1999) 4590.
[32] M. Kruk, M. Jaroniec, A. Sayari, Chemistry of Materials 11 (1999) 492.
[33] K. Morishige, H. Fujii, M. Uga, D. Kinukawa, Langmuir 13 (1997) 3494.
[34] H. Naono, M. Hakuman, T. Shiono, Journal of Colloid and Interface Science 186 (1997) 360.
[35] C. Nguyen, C.G. Sonwane, S.K. Bhatia, D.D. Do, Langmuir 14 (1998) 4950.
[36] J. Rathouský, A. Zhkul, O. Franke, G. Schulz-Ekloff, J. Chem. Soc., Faraday Trans. 90 (1994).
[37] J. Rathouský, A. Zukul, O. Franke, G. Schulz-Ekloff, J. Chem. Soc., Faraday Trans. (1995).
[38] A.V. Neimark, P.I. Ravikovitch, M. Gr?, F. Sch?h, K.K. Unger, Journal of Colloid and Interface Science 207 (1998) 159.
[39] 紀炅廷, in 化學工程系, 國立台灣科技大學, 台灣,台北, 2005.
[40] V.G. R., S. J.L., M. J.M., M. J.A., Microporous and Mesoporous Materials 39 (2000) 13.
[41] Q. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Nature 268 (1995).
[42] Y. Sakamoto, M. Kaneda, O. Terasaki, D.Y. Zhao, J.M. Kim, G. Stucky, H.J. Shin, R. Ryoo, Nature 408 (2000) 5.
[43] 李雅琳, in 化學學系, 國立中央大學, 台灣,中壢, 2005.
[44] 李育誠, in 化學學系, 國立中央大學, 台灣,中壢, 2007.
[45] T.-M. Wu, G.-R. Wu, H.-M. Kao, J.-L. Wang, Journal of Chromatography A 1105 (2006) 168.
[46] K. Fushimi, Y. Sugimura, Meteorology and Geophysics 32 (1981).
[47] W.A. McClenny, J.D. Pleil, M.W. Holdren, R.N. Smith, Analytical Chemistry 56 (2002) 2947.
[48] G.C. Rhoderick, W.R. Miller, Analytical Chemistry 62 (2002) 810.
[49] R.S. Barratt, The Analyst 106 (1981) 33.
[50] A.E. O'Keeffe, G.C. Ortman, Analytical Chemistry 38 (2002) 760.
[51] G. Mitchell, Separation & Purification Methods 29 (2000) 119.
[52] J. Namies慨ik, Journal of Chromatography A 300 (1984) 79.
[53] C.-W. Chung, M.T. Morandi, T.H. Stock, M. Afshar, Environmental Science & Technology 33 (1999) 3661.
指導教授 王家麟(Wang-Jia Ling) 審核日期 2009-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明