博碩士論文 101225014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.144.233.89
姓名 陳芊卉(Cian-huei Chen)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 伽瑪隨機過程之階段應力加速衰退試驗之貝氏序列可靠度分析
(A Sequential Bayesian Reliability Analysis under Gamma Step-Stress Accelerated Degradation Process)
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 逆高斯過程之完整貝氏衰變分析
★ 加速不變原則之偏斜-t過程★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文考慮伽瑪隨機過程之階段應力加速衰退試驗(SSADT)之貝氏可靠度分析。在加速因子為溫度之Arrhenius模型下,以主觀先驗分佈經由馬可夫鏈蒙地卡羅方法(MCMC) 得在常溫下產品壽命及可靠度之貝氏推論。另一方面,藉由在類似產品置於正常環境應力水準下之序列衰退試驗中,更新先驗分佈之超參數,以預測產品失效時間之分佈,同時決定測試時間,並以模擬資料驗
證所提方法的可行性和準確性以及貝氏方法之穩健性。
摘要(英) Degradation analysis is more efficient than the conventional life tests in drawing reliability assessment for high quality products. This thesis aims on the Bayesian approach to the degradation test when the degradation data of different products are collected under higher than normal stress levels via independent gamma processes. Reliability inference of the population under normal condition will be made based on the posterior distribution of the underlying parameters with the aid of Markov chain Monte Carlo method. Further sequentially predictive inference on individual reliability under normal condition is also proposed. Simulation study is presented to show the
appropriateness of the proposed methods, and the robustness of the prior distribution.
關鍵字(中) ★ 階段應力加速衰退試驗
★ 伽瑪隨機過程
★ Arrhenius 模型
★ 馬可夫鏈蒙地卡羅方法
★ 貝氏方法
★ 預測理論
關鍵字(英) ★ Sstep-stress accelerated degradation test
★ gamma process
★ Markov chain Monte Carlo
★ Bayesian approach
★ predictive inference
論文目次 目錄
摘要i
Abstract ii
誌謝iii
目錄v
圖目次vii
表目次x
第一章緒論1
1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
第二章伽瑪隨機過程之階段應力加速衰退模型5
2.1 試驗與模型介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 貝氏推論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 正常環境下產品失效時間分佈及其貝氏推論. . . . . . . . . . . . . . . . . . . . . . 9
第三章衰退資料之貝氏序列預測推論14
v
3.1 常溫下類似產品之預測衰退路徑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 先驗分佈之序列更新. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 動差法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 百分位法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 失效時間之貝氏序列預測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 序列預測之試驗時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
第四章模擬研究22
4.1 模擬資料之可靠度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 資料分析與貝氏序列預測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 試驗時間的選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 先驗分佈之敏感性分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
第五章結論與展望52
參考文獻53
參考文獻 參考文獻
[1] Abramowitz, M. and Stegun, I. (1972). Handbook of Mathematical Functions: with Formulas,
Graphs, and Mathematical Tables, Dover, New York.
[2] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second Edition),
Springer-Verlag, New York.
[3] Birnbaum, Z. W. and Sunders, S. C. (1969). A new family of life distributions. Journal of
Applied Probability, 6, 319–327.
[4] Doksum, K. A. and Normand, S.-L. T. (1995). Gaussian models for degradation process-part
I: Methods for the analysis of biomarker data. Lifetime Data Analysis, 1, 131–144.
[5] Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple se-
quences. Statistical Science, 7, 457–511.
[6] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
721–741.
[7] Graves, T. L., Hamada, M. S., Klamann, R., Koehler, A., and Martz, H. F. (2007). A fully
Bayesian approach for combining multi-level informaion in multi-state fault tree quantification.
Reliability Engineering and System Safety, 92, 1476–1483.
[8] Hamada, M., Martz, H. F., Reese, C. S., Graves, T., Johnson, V., and Wilson, A. G. (2004). A
fully Bayesian approach for combining multilevel failure information in fault tree quantification
and optimal follow-on resource allocation. Reliability Engineering and System Safety, 86, 297–
305.
[9] Hasting, W. K. (1970). Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika, 57, 97–109.
[10] Li, M. and Meeker, W. Q. (2014). Application of Bayesian methods in reliability data analyses.
Journal of Quality Technology, 46, 1–23.
[11] Liao, C. M. and Tseng, S. T. (2006). Optimal design for step-stress accelerated degradation
tests. IEEE Transactions on Reliability, 55, 59–66.
[12] Lim, H. and Yum, B. J. (2011). Optimal design of accelerated degradation tests based on
Wiener process models. Journal of Applied Statistics, 38, 309–325.
[13] Meeker, W. Q. and Escobar, L. A. (1993). A review of recent research current issues in
accelerated testing. International Statistical Review, 61, 147–168.
[14] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data, Wiley, New
York.
[15] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis,
John Wiley & Sons, New York.
[16] Padgeet, W. and Tomlinson, M. A. (2004). Inference from accelerated degradation and failure
data based on Gaussian process models. Lifetime Data Analysis, 10, 191–206.
[17] Park, C. and Padgett, W. J. (2005). Accelerated degradation models for failure based on
geometric Brownian motion and gamma processes. Lifetime Data Analysis, 11, 511–527.
[18] Pettit, L. I. and Young, K. D. S. (1999). Bayesian analysis for inverse Gaussian lifetime data
with measures of degradation. Journal of Statistical Computation and Simulation, 63, 217–
234.
[19] Ross, S. M. (2006). Simulation (Fourth Edition), Elsevier Academic Press, U.S.A.
[20] Touw, A. E. (2009). Bayesian estimation of mixed Weibull distributions. Reliability Engineering
and System Safety, 94, 463–473.
[21] Tseng, S. T., Balakrishnan, N., and Tsai, C. C. (2009). Optimal step-stress accelerated degra-
dation test plan for gamma degradation processes. IEEE Transactions on Reliability, 58,
611–618.
[22] Tseng, S. T. and Wen, Z. C. (2000). Step-stress accelerated degradation analysis for highly
reliable products. Journal of Quality Technology, 32, 209–216.
[23] Wang, L., Pan, R., Li, X., and Jiang, T. (2013). A Bayesian reliability evaluation method
with integrated accelerated degradation testing and field information. Reliability Engineering
and System Safety, 112, 38–47.
[24] Whitmore, G. A. (1995). Estimating degradation by a Wiener diffusion process subject to
measurement error. Lifetime Data Analysis, 1, 307–319.
[25] Whitmore, G. A., Crowder, M. J., and Lawless, L. F. (1998). Failure inference from a marker
process based on a bivariate Wiener model. Lifetime Data Analysis, 4, 229–251.
[26] Whitmore, G. A. and Schenkelberg, F. (1997). Modeling accelerated degradation data using
Wiener diffusion with a scale transformation. Lifetime Data Analysis, 3, 27–45.
指導教授 樊采虹(Tsai-hung Fan) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明