博碩士論文 962203055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.145.9.51
姓名 呂宗展(Zong-zhan Lu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 聯咪唑錸錯合物之自組裝合成、結構與性質研究
(Self-assembly, Structures and Properties of Bisimidazole Rhenium Complexes)
相關論文
★ 鈷、鋅離子與1,2,4,5-苯四酸之自組裝合成結構與性質探討★ 探討有機鹼DBU與金屬salen錯合物在二氧化碳對環氧化物的環狀加成反應中的角色
★ 磷橋異核雙金屬錯合物的配位子移轉★ 含有碳烯化合物之鈀金屬異相觸媒催化碳碳鍵生成反應之研究
★ 銅(I)催化的碳硫偶合反應中間產物研究★ 鈾鍺酸鹽之合成與結構鑑定
★ 稀土元素配位聚合物和亞磷酸鹽之合成、晶體結構與發光性質研究★ 含有機模板的錫鍺酸鹽與錫矽酸鹽之合成與其結構鑑定
★ 銅催化碳硫偶合反應之陽離子效應研究★ 銅(I)催化碳-氮偶合反應之研究
★ 探討β芳香醚類斷裂之研究★ 銅(I)催化碳-氮偶合反應之研究
★ 鋰鋁鈦磷酸鹽的合成、晶體結構及性質研究★ 鋰鐵鈦磷酸鹽之晶體結構與離子導電度性質研究
★ 鈦磷酸鹽與鈦矽酸鹽之合成、晶體結構與 性質研究★ 有機-無機混成之金屬磷酸鹽/亞磷酸鹽骨架化合物的合成與性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究包含三部分。
第一部分是使用Re2(CO)10與4-(1-naphthylvinyl)pyridine (1,4-NVP) ,分別搭配1-butanol (n-BuOH)、1-decanol (n-DecOH)、2,2′-biimidazole (BImH2)、2,2′-Bis(4,5-dimethylimidazole) (BiDMImH2)或2,2′-bisbenzimidazole (BiBzImH2),於溶劑熱條件下自組裝合成,可得到cis-[Re(CO)3(1,4-NVP)]2(n-BuO)2 (1)、[Re(CO)3(1,4-NVP)]2(n-DecO)2 (2)、[Re(CO)3(1,4-NVP)]2BIm (3)、trans-[Re(CO)3(1,4-NVP)]2BiDMIm (4)或trans-[Re(CO)3(1,4-NVP)]2BiBzIm (5) 。錯合物1-5經由紅外線共振吸收、核磁共振氫譜、質譜、元素分析等方法鑑定,1、4和5之結構也以X光單晶繞射解析。可藉由紅外線共振吸收之C≡O特徵峰的分裂判斷錯合物2和3的順反構型。
第二部分則使用Re2(CO)10與BImH2,分別搭配1,4-NVP或4,4′-dipyridyl (4,4′-dpy),於溶劑熱條件下自組裝合成,可得到fac-[Re(CO)3(1,4-NVP)]BImH (6)或(Z)-[Re(CO)3BImH]2-μ-(4,4′-dpy) (7),錯合物6和7經由紅外線共振吸收、核磁共振氫譜、質譜、元素分析等方法鑑定,其結構也以X光單晶繞射解析。兩錯合物都利用分子間氫鍵作用力形成二聚物。官能化的錯合物6具有抓取質子、氟離子辨識和順反式轉換的能力,可藉由核磁共振氫譜、 紫外-可見光吸收等方法鑑定。錯合物6也展現發光特性。
第三部分使用Re2(CO)10與trans-1,2-bis(4-pyridyl)ethylene (4,4′-bpe),分別搭配BImH2、BiDMImH2或BiBzImH2,於溶劑熱條件下自組裝合成,可得到([Re(CO)3]2BIm)2-μ,μ′-(4,4′-bpe)2 (8)、([Re(CO)3]2BiDMIm)2-μ,μ′-(4,4′-bpe)2 (9)與([Re(CO)3]2BiBzIm)2-μ,μ′-(4,4′-bpe)2 (10)。錯合物8-10經由紅外線共振吸收、核磁共振氫譜、質譜、元素分析等方法鑑定,其結構也以單晶X光繞射法解析。錯合物8和10藉由可見光照射行[2 + 2] 光化二聚合反應,分別得到([Re(CO)3]2BIm)2-μ-(4,4′-tpcb) (11)和([Re(CO)3]2BiBzIm)2-μ-(4,4′-tpcb) (12) (4,4′-tpcb = 1,2,3,4-tetrakis(4-pyridyl)cyclobutane),反應具專一性而且過程屬單晶的轉換(single-crystal to single-crystal transformation)。錯合物11和12經由紅外線共振吸收、核磁共振氫譜、紫外-可見光吸收等方法鑑定,其結構也以X光單晶繞射解析。另外,錯合物8和10對光的敏感度高,若在溶液中反應,只需很短的時間即完成光化二聚合。此外,實驗結果意味著光化二聚合的難易程度似乎會受到遠端聯咪唑類配基上的取代基推拉電子效應所影響。
摘要(英) The study of this thesis include three parts.
The first part, complexes cis-[Re(CO)3(1,4-NVP)]2(n-BuO)2 (1), [Re(CO)3(1,4-NVP)]2(n-DecO)2 (2), [Re(CO)3(1,4-NVP)]2BIm (3), trans-[Re(CO)3(1,4-NVP)]2BiDMIm (4) or trans-[Re(CO)3(1,4-NVP)]2BiBzIm (5) were successfully synthesized by treatment of Re2(CO)10 with 4-(1-naphthylvinyl)pyridine (1,4-NVP) and 1-butanol (n-BuOH), 1-decanol (n-DecOH), 2,2′-biimidazole (BImH2), 2,2′-bis(4,5-dimethylimidazole) (BiDMImH2) or 2,2′-bisbenzimidazole (BiBzImH2), respectively, under solvothermal conditions. The series of rhenium-based complexes 1-5 was characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques and Elemental Analysis. The structures of complexes 1, 4, and 5 were further confirmed by single-crystal X-ray diffraction analysis. Complexes 2 and 3 can be recognized cis or trans conformation by means of knowing the splitting C≡O bands.
The second part, complexes fac-[Re(CO)3(1,4-NVP)]BImH (6), or (Z)-[Re(CO)3BImH]2-μ-(4,4′-dpy) (7), were successfully synthesized by treatment of Re2(CO)10 with BImH2 or 1,4-NVP and 4,4′-dipyridyl (4,4′-dpy), respectively, under solvothermal conditions. The complexes were characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques and Elemental Analysis. The structures were further confirmed by X-ray single-crystal diffraction analysis. The functionalized complexe 6 has capabilities of probing proton, recognizing fluoride, and trans-to-cis isomerization and shows photoluminescence property.
The last part, complexes ([Re(CO)3]2BIm)2-μ,μ′-(4,4′-bpe)2 (8), ([Re(CO)3]2BiDMIm)2-μ,μ′-(4,4′-bpe)2 (9) or ([Re(CO)3]2BiBzIm)2-μ,μ′-(4,4′-bpe)2 (10) were successfully synthesized by treatment of Re2(CO)10 with trans-1,2-bis(4-pyridyl)ethylene (4,4′-bpe) and BImH2, BiDMImH2 or BiBzImH2, respectively, under solvothermal conditions. The complexes 8-10 was characterized using FT-IR, 1H NMR, FAB-MS spectroscopic techniques and Elemental Analysis. The structures were further confirmed by single-crystal X-ray diffraction analysis. Complexes 8 and 10 were practiced [2 + 2] photodimerization upon visible-light-irradiation leading to the specific complexes ([Re(CO)3]2BIm)2-μ-(4,4′-tpcb) (11) and ([Re(CO)3]2BiBzIm)2-μ-(4,4′-tpcb) (12) (4,4′-tpcb = 1,2,3,4-tetrakis(4-pyridyl)cyclobutane), accompanied by single-crystal to single-crystal transformation. The complexes were characterized using FT-IR, 1H NMR and UV-visible spectroscopic techniques. The structures were further confirmed by single-crystal X-ray diffraction analysis. In addition, complexes 8 and 10 can carry out photodimerization in the liquid state at once as a result of light-sensitized and the results suggest that the substituents on the bisimidazolate having electron-donor or electron-withdrawing effect seem to affect the capabilities of photodimerization.
關鍵字(中) ★ 自組裝
★ 聯咪唑
★ 錸錯合物
關鍵字(英) ★ Bisimidazole
★ Rhenium Complexes
★ Self-assembly
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiv
方程式目錄 xv
第一章 緒論 1
1.1 超分子化學 1
1.1.1 Ion—ion interaction (100 ~ 350 kJ mol-1) 1
1.1.2 Ion—dipole interactions (50 ~ 200 kJ mol-1) 2
1.1.3 Dipole—dipole interactions (5 ~ 50 kJ mol-1) 2
1.1.4 Hydrogen bonding interactions (4 ~ 120 kJ mol-1) 3
1.1.5 π-π stacking (0 ~ 50 kJ mol-1) 4
1.1.6 van der Waals force (< 5 kJ mol-1) 5
1.1.7 Hydrophobic and hydrophilic effect 6
1.2 自組裝(self-assembly) 7
1.3 研究動機 12
1.3.1 利用分子間氫鍵作用力所合成的離子對、二聚體與網狀結構 12
1.3.2 金屬環錯合物(Metallacycle) 15
1.3.3 [2 + 2] photodimerization 21
1.4 合成策略 24
1.4.1 錸金屬的選用 24
1.4.2 聯咪唑有機配子的選用 25
第二章 實驗部份 26
2.1 儀器設備及實驗藥品 26
2.1.1 儀器設備 26
2.1.2 實驗藥品 27
2.2 水熱合成法(Hydrothermal synthesis) 28
2.3 有機配子 30
2.3.1 直接購買使用的有機配子 30
2.3.2 有機配子2,2′-biimidazole (BImH2)之合成 30
2.3.3 有機配子2,2′-bisbenzimidazole (BiBzImH2)之合成 31
2.4 錸錯合物之合成步驟 32
2.4.1 cis-[Re(CO)3(1,4-NVP)]2(n-BuO)2 (1) 32
2.4.2 [Re(CO)3(1,4-NVP)]2(n-DecO)2 (2) 33
2.4.3 [Re(CO)3(1,4-NVP)]2BIm (3) 34
2.4.4 trans-[Re(CO)3(1,4-NVP)]2BiDMIm (4) 35
2.4.5 trans-[Re(CO)3(1,4-NVP)]2BiBzIm (5) 36
2.4.6 fac-[Re(CO)3(1,4-NVP)]BImH (6) 37
2.4.7 (Z)-[Re(CO)3BImH]2-μ-(4,4′-dpy) (7) 38
2.4.8 ([Re(CO)3]2BIm)2-μ,μ′-(4,4′-bpe)2 (8) 39
2.4.9 ([Re(CO)3]2BiDMIm)2-μ,μ′-(4,4′-bpe)2 (9) 40
2.4.10 ([Re(CO)3]2BiBzIm)2-μ,μ′-(4,4′-bpe)2 (10) 41
2.4.11 ([Re(CO)3]2BIm)2-μ-(4,4′-tpcb) (11) 42
2.4.12 ([Re(CO)3]2BiBzIm)2-μ-(4,4′-tpcb) (12) 42
2.5 錸錯合物之光物理實驗 45
2.5.1 紫外光/可見光光譜分析 45
2.5.2 螢光光譜分析 46
第三章 結果與討論 47
3.1  錸錯合物1-5的合成與構型分析 49
3.1.1 錸錯合物1和2的合成與解析 49
3.1.2 錸錯合物3-5合成與解析 54
3.1.3 錸錯合物1-5的綜合討論 64
3.2  錸錯合物6和7的合成與性質探討 66
3.2.1 錸錯合物6的合成與解析 66
3.2.2 錸錯合物7的合成與解析 72
3.2.3 錸錯合物6和7的綜合討論 77
3.3  錸錯合物8-12的合成與性質探討 98
3.3.1 錸錯合物8-10的合成與解析 98
3.3.2 錸錯合物11和12的合成與綜合討論 110
第四章 結論 128
參考文獻 130
附錄目錄 138
參考文獻 [1]Lehn, J. M. Science 1985, 227, 849.
[2]Lehn, J. M. Supramolecular Chemistry:Concepts and Perspectives, New York, 1995.
[3]Berg, J. M.; Tymoczko, Stryer, J. L.; L. Biochemistry, Freeman and Company, New York, 2001.
[4]Graham Solomons, T. W. Organic Chemistry, John Wiley & Sons, 1994.
[5]Schneider, H. J.; Yatsimirsky, A. K. Principles and methods in supramocular chemistry, Wiley, 1999.
[6]Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
[7]Fujita, M; Fujita, N.; Oguraß, K.; Yamaguchi, K. Nature 1999, 400 , 52.
[8]Dolomanov, O. V.; Blake, A. J.; Champness, N. R.; Schröder, M.; Wilson, C. Chem. Commun. 2003, 6, 682.
[9](a) Freys, J. C.; Bernardinelli, G.; Wenger, O. S. Chem. Commun. 2008, 36, 4267. (b) Cui, Y.; Niu, Y.-L.; Cao, M.-L.; Wang, K.; Mo, H.-J.; Zhong, Y.-R.; Ye, B.-H. Inorg. Chem. 2008, 47, 5616. (c) Derossi, S.; Adams, H.; Ward, M. D. J. Chem. Soc., Dalton Trans. 2007, 1, 33 (d) Ion, L.; Morales, D.; Nieto, S.; Pérez, J.; Riera, L.; Riera, V.; Miguel, D.; Kowenicki, R. A.; McPartlin, M. Inorg. Chem. 2007, 46, 2846. (e) Halbauer, K.; Göbel, A.; Sterzik, A.; Görls, H.; Rau, S.; Imhof, W. Eur. J. Inorg. Chem. 2007, 11, 1508. (f) Sang, R.-L.; Xu, L. Eur. J. Inorg. Chem. 2006, 6, 1260. (g) Fortin, S.; Beauchamp, A. L. Inorg. Chem. 2000, 39, 4886. (h) Fortin, S.; Beauchamp, A. L. Inorg. Chem. 2001, 40, 105. (i) Cui, Y.; Mo, H.-J.; Chen, J.-C.; Niu, Y.-L.; Zhong, Y.-R.; Zheng, K.-C.; Ye, B.-H. Inorg. Chem. 2007, 46, 6427.
[10](a) Kaiser, S. W.; Saillant, R. B.; Butler, W. M.; Rasmussen, P. G. Inorg. Chem. 1976, 15, 2681. (b) Usón, R.; Gimeno, J.; Ora, L. A.; Martínez de llarduya, J. M.; Cabeza, J. A. J. Chem. Soc., Dalton Trans. 1983, 8, 1729. (c) Gamasa, M. P.; Garcia, E.; Gimeno, J. J. Organomet. Chem. 1986, 307, 39. (d) Ora, L. A.; Carmona, D.; Lamata, M. P.; Tiripicchio, A.; Lahoz, F. J. J. Chem. Soc., Dalton Trans. 1986, 1, 15. (e) Rillema, D. P.; Sahai, R.; Matthews, P.; Edwards, A. K.; Shaver, R. J.; Morgan, L. Inorg. Chem. 1990, 29, 167. (f) Garcia, M. P.; López, A. M.; Esteruelas, M. A.; Lahoz, F. J.; Ora, L. A. J. Chem. Soc., Dalton Trans. 1990, 11, 3465. (g) Kandil, S. S.; Madkour, L. H.; Spectrosc. Lett. 1993, 26, 535. (h) Esteruelas, M. A.; Lahoz, F. J.; Ora, L. A.; Oňate, E.; Ruiz, N. Inorg. Chem. 1994, 33, 787. (i) Kanno, H.; Manriki, S.; Yamazaki, E.; Utsuno, S.; Fujita, J. Bull. Chem. Soc. Jpn. 1996, 69, 1981. (j) Esteruelas, M. A.; Lahoz, F. J.; López, A. M.; Oňate, E.; Oro, L. A.; Ruiz, N.; Soda, E.; Tolosa, J. Inorg. Chem. 1996, 35, 7811. (k) Tadokoro, M.; Toyoda, J.; Isobe, K.; Itoh, T.; Miyazaki, A.; Enoki, T.; Nakasuji, K. Chem. Lett. 1995, 24, 613. (l) Saraiva, M. S.; Quintal, S.; Portugal, F. C. M.; Lopes, T. A.; Félix, V.; Nogueira, J. M. F.; Meireles, M.; Drew, M. G. B.; Calhorda, M. J. J. Organomet. Chem. 2008, 693, 3411. (m) Fortin, S. ; Fabre, P.-L.; Dartiguenave, M.; Beauchamp, A. L. J. Chem. Soc., Dalton Trans. 2001, 23, 3520. (n) Tadokoro, M.; Inoue, T.; Tamaki, S.; Fujii, K.; Isogai, K.; Nakazawa, H.; Takeda, S.; Isobe, K.; Koga, N.; Ichimura, A.; Nakasuji, K. Angew. Chem., Int. Ed. 2007, 46, 5938.
[11](a) Tadokoro, M.; Isobe, K.; Uekusa, H.; Ohashi, Y.; Toyoda, J.; Tashiro, K.; Nakasuji, K. Angew. Chem., Int. Ed. 1998, 38, 95. (b) Lorente, M. A. M.; Dahan, F.; Petrouleas, V.; Bousseksou, A.; Tuchagues, J.-P. Inorg. Chem. 1995, 34, 5346. (c) Öhrström, L.; Larsson, K.; Borg, S.; Norberg, S. T. Chem. Eur. J. 2001, 7, 4805. (d) Öhrström, L.; Larsson, K. J. Chem. Soc., Dalton Trans. 2004, 3, 347. (e) Ding, B.-B.; Weng, Y.-Q.; Mao, Z.-W.; Lam, C.-K.; Chen, X.-M.; Ye, B.-H. Inorg. Chem. 2005, 44, 8836. (f) Mo, H.-J.; Zhong, Y.-R.; Cao, M.-L.; Ou, Y.-C.; Ye, B.-H. Cryst. Growth Des. 2009, 9, 488.
[12](a) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 371. (b) Takaoka, K.; Kawano, M.; Hozumi, T.; Ohkoshi, S.-I.; Fujita, M. Inorg. Chem. 2006, 45, 3976. (c) Yoshizawa, M.; Kusukawa, T.; Kawano, M.; Ohhara, T.; Tanaka, I.; Kurihara, K.; Niimura, N.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 2798. (d) Tashiro, S.; Tominaga, M.; Kawano, M.; Therrien, B.; Ozeki, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 4546. (e) Yoshizawa, M.; Ono, K.; Kumazawa, K.; Kato, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 10800. (f) Tominaga, M.; Suzuki, K.; Murase, T.; Fujita, M. J. Am. Chem. Soc. 2005, 127, 11950.
[13](a) Fujita, K.-I.; Yamashita, M.; Puschmann, F.; Alvarez-Falcon, M. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9044. (b) Yamashita, K.-I.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850. (c) Kamiya, N.; Tominaga, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 3816. (d) Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 7000. (e) Suzuki, K.; Kawano, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 10652. (f) Yamauchi, Y.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2008, 130, 5832.
[14](a) Kaim, W.; Schwederski, B.; Dogan, A.; Fiedler, J.; Kuehl, C. J.; Stang, P. J. Inorg. Chem. 2002, 41, 4025. (b) Deak, A.; Megyes, T.; Tarkanyi, G.; Kiraly, P.; Biczok, L.; Palinkas, G.; Stang, P. J. J. Am. Chem. Soc. 2006, 128, 12668. (c) Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Zheng, Y.-R.; Lyndon, M. M.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 14187. (d) Kuehl, C. J.; Huang, S. D.; Stang, P. J. J. Am. Chem. Soc. 2001, 123, 9634. (e) Yang, H.-B.; Ghosh, K.; Zhao, Y.; Northrop, B. H.; Lyndon, M. M.; Muddiman, D. C.; White, H. S.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 839. (f) Li, S.-S.; Yan, H.-J.; Wan, L.-J.; Yang, H.-B.; Northrop, B. H.; Stang, P. J. J. Am. Chem. Soc. 2007, 129, 9268. (g) Jude, H.; Sinclair, D. J.; Das, N.; Sherburn, M. S.; Stang, P. J. J. Org. Chem. 2006, 71, 4155. (h) Chi, K.-W.; Addicott, C.; Moon, M.-E.; Lee, H. J.; Yoon, S. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6662. (i) Huang, F.; Yang, H.-B.; Das, N.; Maran, U.; Arif, A. M.; Gibson, H. W.; Stang, P. J. J. Org. Chem. 2006, 71, 6623. (j) Yang, H.-B.; Ghosh, K.; Arif, A. M.; Stang, P. J. J. Org. Chem. 2006, 71, 9464. (k) Yang, H.-B.; Das, N.; F. H.; Hawkridge, A. M.; Dıaz, D. D.; Arif, A. M.; Finn, M. G.; Muddiman, D. C.; Stang, P. J. J. Org. Chem. 2006, 71, 6644. (l) Northrop, B. H.; Glockner, A.; Stang, P. J. J. Org. Chem. 2008, 73, 1787. (m) Das, N.; Ghosh, A.; Singh, O. M.; Stang, P. J. Org. Lett. 2006, 8, 1701. (n) Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Stang, P. J. Org. Lett. 2007, 9, 1561. (o) Yang, H.-B.; Ghosh, K.; Das, N.; Stang, P. J. Org. Lett. 2006, 8, 3991.
[15](a) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (b) Jones, C. J. Chem. Soc. Rev. 1998, 27, 289. (d) Swiegers, G. F.; Malefetse, T. J. Chem. Rev. 2000, 100, 3483. (c) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Chem. Commun. 2001, 6, 509. (d) Sauvage, J.-P. Acc. Chem. Res. 1998, 31, 611.
[16](a) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975. (b) Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J. M. Angew. Chem., Int. Ed. 2004, 43, 3644.
[17](a) Dixon, F. M.; Eisenberg, A. H.; Farrell, J. R.; Mirkin, C. A. Inorg. Chem. 2000, 39, 3432 (b) Liu, X.; Eisenberg, A. H.; Stern, C. L.; Mirkin, C. A. Inorg. Chem. 2001, 40, 2940 (c) Gianneschi, N. C.; Mirkin, C. A. Inorg. Chem. 2002, 41, 5326 (d) Masar, M. S.; Mirkin, C. A.; Stern, C. L.; Zakharov, L. N.; Rheingold, A. L. Inorg. Chem. 2004, 43, 4693 (e) Holliday, B. J.; Farrell, J. R.; Mirkin, C. A. J. Am. Chem. Soc. 1999, 121, 6316 (f) Jeon, Y.-M.; Heo, J.; Brown, A. M.; Mirkin, C. A. Organometallics 2006, 25, 2729 (g) Brown, A. M.; Ovchinnikov, M. V.; Stern, C. L.; Mirkin, C. A. J. Am. Chem. Soc. 2004, 126, 14316 (h) Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127, 1644 (i) Yoon, H. J.; Heo, J.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 14182 (j) Holliday, B. J.; Arnold, F. P.; Mirkin, C. A. J. Phys. Chem. A 2003, 107, 2737 (k) Eisenberg, A. H.; Dixon, F. M.; Mirkin, C. A.; Stern, C. L.; Incarvito, C. D.; Rheingold, A. L. Organometallics 2001, 20, 2052.
[18]Ghosh, K.; Yang, H.-B.; Northrop, B. H.; Lyndon, M. M.; Zheng, Y.-R.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2008, 130, 5320.
[19]Suzuki, K.; Kawano, M.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 10652.
[20]Khoshbin, M. S.; Ovchinnikov, M. V.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L. Inorg. Chem. 2005. 44, 496.
[21](a) Rajendran, T.; Manimaran, B.; Lee, F.-Y.; Lee, G.-H.; Peng, S.-M.; Wang, C. M.; Lu, K.-L. Inorg. Chem. 2000, 39, 2016. (b) Rajendran, T.; Manimaran, B.; Liao, R.-T.; Lin, R.-J.; Thanasekaran, P.; Lee, G.-H.; Peng, S.-M.; Liu, Y.-H.; Chang, I.-J.; Rajagopal, S.; Lu, K.-L. Inorg. Chem. 2003, 42, 6388.
[22]Manimaran, B.; Rajendran, T.; Lu, Y.-L.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. J. Chem. Soc., Dalton Trans. 2001, 5, 515.
[23]Sathiyendiran, M.; Liao, R.-T.; Thanasekaran, P.; Luo, T.-T.; Venkataramanan, N. S.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2006, 45, 10052.
[24]Liao, R.-T.; Yang, W.-C.; Thanasekaran, P.; Tsai, C.-C.; Sathiyendiran, M.; Liu, Y.-H.; Rajendran, T.; Lin, H.-M.; Tseng, T.-W.; Lu, K.-L. Chem. Commun. 2008, 27, 3175.
[25](a) Li, H.; Eddaoudi, M.; O’Keefe, M.; Yaghi, O. M. Nature 1999, 402, 276. (b) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158. (c) Lee, E. Y.; Suh, M. P. Angew. Chem., Int. Ed. 2004, 43, 2798. (d) Iordanidis, L.; Kanatzidis, M. G. Angew. Chem. Int. Ed. 2000, 39, 1928. (e) Iordanidis, L.; Kanatzidis, M. G. J. Am. Chem. Soc. 2000, 122, 8319. (f) Rather, B.; Zaworotoko, M. J. Chem. Commun. 2003, 7, 830. (g) Biradha, K.; Fujita, M. Angew. Chem., Int. Ed. 2002, 41, 3392. (h) Ranford, J. D.; Vittal, J. J.; Wu, D. Angew. Chem., Int. Ed. 1998, 37, 1114. (i) Ranford, J. D.; Vittal, J. J.; Wu, D.; Yang, X. Angew. Chem., Int. Ed. 1999, 38, 3498. (j) Chen, C.-L.; Goforth, A. M.; Smith, M. D.; Su, C.-Y.; zur Loye, H.-C. Angew. Chem., Int. Ed. 2005, 44, 6673. (k) Kumar, D.; Jose, D. A.; Dastidar, A. Das, P. Inorg. Chem. 2005, 44, 6933. (l) Ma, J. P.; Dong, Y.-B.; Huang, R. Q.; Smith, D. M.; Su, C.-Y. Inorg. Chem. 2005, 44, 6143. (m) Chang, J.-P.; Lin, Y.-Y.; Zhang, W.-X.; Chen, X.-M. J. Am. Chem. Soc. 2005, 127, 14162.
[26](a) Schmidt, G. M. J. Chem. Soc. 1964, 2014. (b) Schmidt, G. M. Pure Appl. Chem. 1971, 27, 647. (c) Wegner, G. Pure Appl. Chem. 1977, 49, 443. (d) Photochemistry in Organized and Constrained Media (Ed.: V. Ramamurthy), VCH, New York, 1991. (e) Ramamurthy, V.; Venkatesan, K. Chem. Rev. 1987, 87, 433.
[27](a) Theocharis, C. R.; Jones, W. in Organic Solid State Chemistry (Ed.: G. R. Desiraju), Elsevier, 1987, chap. 2, pp. 47. (b) Wagner, P.; Park B.-S. in Organic Photochemistry, Vol. 11 (Ed.:A. Padwa), Dekker, New York, 1991, chap. 4 (c) Jones, W. Organic Molecular Solids: Properties and Applications, CRCPress, Boca Raton, FL, 1997 (d) Organic Solid State Reactions (Ed.: F. Toda), Top. Curr. Chem. Vol. 254, 2005. (e) Keating, A. E.; Garcia-Garibay M. A. in Organic and Inorganic Photochemistry (Eds.: V. Ramamurthy, K. S. Schanze), Dekker, NewYork, 1998, pp. 195. (f) Braga, D.; Grepioni, F. Angew. Chem., Int. Ed. 2004, 43, 4002. (g) Matsumoto, A. Top. Curr. Chem. 2005, 254, 263. (h) Dilling, W. L. Chem. Rev. 1983, 83, 3. (i) Maekawa, Y.; Kato, S.; Saigo, K.; Hasegawa, M. Macromolecules 1991, 24, 2314. (j) Caronna, T.; Liantonia, R.; Logothetis, T. A.; Metrangolo, P.; Pilati, T.; Resnati, G. J. Am. Chem. Soc. 2004, 126, 4500.
[28](a) MacGillivray, L. R.; Papaefstathiou, G. S.; Friščič, T.; Varshney, D.B.; Hamilton, T. D. Top. Curr. Chem. 2005, 248, 201. (b) Varshney, D.B.; Gao, X.; Friščič, T.; MacGillivray, L. R. Angew. Chem., Int. Ed. 2006, 45, 646. (c) Atkinson, M. B. J.; Bučar, D.-K.; Sokolov, A. N.; Friščič, T.; Robinson, C. N.; Bilal, M. Y.; Sinada, N. G.; Chevannes, A.; MacGillivray, L. R. Chem. Commun. 2008, 44, 5713. (d) Papaefstathiou, G. S.; Zhong, Z.; Geng L.; MacGillivray, L. R. J. Am. Chem. Soc. 2004, 126, 9158. (e) Peedikakkal, A. M. P.; Koh, L. L.; Vittal, J. J. Chem. Commun. 2008, 4, 441. (f) Nagarathinam, M.; Vittal, J. J. Chem. Commun. 2008, 4, 438. (g) Lee, J. Y.; Hong, S. J.; Kim, C.; Kim, Y. J. Chem. Soc., Dalton Trans. 2005, 23, 3716. (h) Blake, A. J.; Champness, N. R.; Chung, S. S. M.; Li, W.-S.; Schrőder, M. Chem. Commun. 1997, 17, 1675.
[29](a) Chu, Q.; Swenson, D. C.; MacGillivray, L. R. Angew. Chem., Int. Ed. 2005, 44, 3569. (b) Papaefstathiou, G. S.; Georgia, I. G.; Friščič, T.; MacGillivray, L.R. Chem. Commun. 2005, 31, 3974. (c) Toh, N. L.; Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2005, 44, 2237. (d) Nagarathinam, M.; Vittal, J. J. Angew. Chem., Int. Ed. 2006, 45, 4337. (e) Papaefsthathiou, G. S.; Zhong, Z.; Geng, L.; MacGillivray, L. R. J. Am.Chem. Soc. 2004, 126, 9158. (f) Theocharis, C. R.; Clark, A. M.; Hopkin, S. E.; Jones, P. Mol. Cryst. Liq. Cryst. 1988, 156(Pt.A), 85. (g) Friščič, T.; MacGillivray, L. R. Chem. Commun. 2005, 46, 5748.
[30]Tadokoro, M.; Nakasuji, K. Coord. Chem. Rev. 2000, 198, 205.
[31](a) 李光華, 化學(Chemistry, The Chinese Chem. Soc. Taiwan China) 1994, 52, 405. (b) Fajita, M.; Kwon, Y. J.; Washizu S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151. (c) West, A. R. Solid State Chemistry and it’s Applications. John Wiley & Son Ltd. Singapore, 1984. (d) Raberau, A. Angew. Chem., Int. Ed. 1985, 24, 1026.
[32]Xiao, J.-C.; Shreeve, J. M. J. Org. Chem. 2005, 70, 3072.
[33]Yin, J.; Elsenbaumer, R. L. J. Org. Chem. 2005, 70, 9436.
[34]曾宜秀 國立台灣師範大學化學系研究所碩士論文 2008.
[35](a) Dinolfo, P. H.; Benkstein, K. D.; Stern, C. L.; Hupp J. T. Inorg. Chem. 2005, 44, 8707. (b) Dinolfo, P. H.; Williams, M. E.; Stern, C. L.; Hupp, J. T. J. Am. Chem. Soc. 2004, 126, 12989.
[36]Malarski, Z.; Sobczyk, L. Spectrochem. Acta. 48A, 1992, 519.
[37]Yamashita, K.-I.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 1850.
[38]Patrocínio, A. O.T.; Murakami Iha N. Y. Inorg. Chem. 2008, 47, 10851.
[39](a) PAC, 2007, 79, 293 on page 359. (b) http://en.wikipedia.org/wiki/Isosbestic_point.
[40](a) Manimaran, B.; Lai, L.-J.; Thanasekaran, P.; Wu, J.-Y.; Liao, R.-T.; Tseng, T.-W.; Liu, Y.-H.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2006, 45, 8070. (b) Benkstein, K. D.; Hupp, J. T.; Stern, C. L. Angew. Chem., Int. Ed. 2000, 39, 2891. (c) Thanasekaran, P.; Wu, J.-Y.; Manimaran, B.; Rajendran, T.; Chang, I-J.; Rajagopal, S.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. J. Phys. Chem. A, 2007, 111, 10953. (d) Thanasekaran, P.; Liao, R.-T.; Manimaran, B.; Liu, Y.-H.; Chou, P.-T.; Rajagopal, S.; Lu, K.-L. J. Phys. Chem. A, 2006, 110, 10683. (e) Bhattacharya, D.; Sathiyendiran, M.; Luo, T.-T.; Chang, C.-H.; Cheng, Y.-H.; Lin, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2009, 48, 3731. (f) Manimaran, B.; Thanasekaran, P.; Rajendran, T.; Lin, R.-J.; Chang, I-J.; Lee, G.-H.; Peng, S.-M.; Rajagopal, S.; Lu, K.-L. Inorg. Chem. 2002, 41, 5323. (g) Manimaran, B.; Lai, L.-J.; Thanasekaran, P.; Wu, J.-Y.; Liao, R.-T.; Tseng, T.-W.; Liu, Y.-H.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Inorg. Chem. 2006, 45, 8070.
[41]Han, Y.-F.; Lin, Y.-J.; Jia, W.-G.; Wang, G.-L.; Jin, G.-X. Chem. Commun. 2008, 15, 1807.
指導教授 李光華、呂光烈
(Kwang-hwa, Lii、Kuang-lieh, Lu)
審核日期 2009-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明